VCターボエンジン
ドライバーの意のままに、高い環境性能と圧倒的な動力性能を同時に実現する量産型世界初の可変圧縮比エンジン
VCターボエンジンは、ピストン上/下死点位置を連続的に可変するマルチリンク機構を採用し、燃費とパワーを決める最重要パラメータである圧縮比を自在に切り替えることで、通常はトレードオフの関係にある驚異的な低燃費と圧倒的なハイパワーを同時に実現することができる量産型世界初のエンジンです。

技術の働き
可変圧縮比を実現する技術
ガソリンエンジンは、シリンダー内に取り込んだ混合気を圧縮したところで点火し、燃焼させます。
このとき、高圧縮にするほど高効率運転ができますが、温度上昇により異常燃焼(ノッキング)が発生するため、圧縮比には限界があります。
巡航時など吸気量が少ないときには限界圧縮比は高く、逆に加速時など吸気量が多いときには限界圧縮比は低くなります。特にターボエンジンのような過給された混合気を吸気をしている状況では、限界圧縮比はさらに低くなります。このように、負荷の状況に応じて、理想的な圧縮比は変わります。
従来のエンジンは、ピストンとクランクシャフトが直接コンロッドでつながる構造のため、圧縮比を変えることはできません。
VCターボエンジンは、コンロッドに替えてマルチリンク機構でクランクシャフトを回転させる構造とし、リンクの端点をアクチュエータで可動にすることにより、ピストンとクランクシャフト間の距離を変化させ、圧縮比を8:1から14:1の間で無段階に自在に変更できるようにしています。ドライバーのアクセル操作に対応して、常に最適な圧縮比へ変化させます。

- 圧縮比の変更が必要な場合、ハーモニックドライブがアクチュエータアームを動かす
- アクチュエータアームがコントロールシャフトを回転させる
- コントロールシャフトの回転によってLリンクを動かし、マルチリンクの角度を変える
- マルチリンクはシリンダー内のピストンストロークの上下位置を調整し、圧縮比が変更される

リンク配置の最適化

技術の仕組み

-
アトキンソンサイクルによるポンピングロスの低減
通常ガソリンエンジンでは、巡航時などパワーを必要としないときにはスロットルバルブを閉じて吸入空気量を減らしますが、通気抵抗が増えるため(ポンピングロス)、燃費向上の阻害要因となります。アトキンソンサイクルではエンジンの吸気バルブの開閉タイミングを制御し、巡航時には遅めに開くことで吸入空気量を減らしパワーをコントロールします。スロットルバルブのみで吸入空気量を調整する従来のエンジンと比較してポンピングロスが低減し、燃費を向上させることができます。