ITS (Intelligent Transport Systems)

ITS is a completely new type of technology that uses cutting-edge electronics and information communications technology to bring people, vehicles and the traffic environment together.

Nissan is proposing and developing ITS technologies with the intention of forging an optimum harmony of people, vehicles and the traffic environment. Through the implementation of these technologies, Nissan aims to contribute to the provision of safe, comfortable and enjoyable motoring and to the formation of a new automotive society friendly to the global environment.

Nissan, focusing on the human-machine interface as a means of developing systems designed to be user-friendly, is vigorously proposing and developing safety systems based on its own original concepts while at the same time actively participating in the Advanced Safety Vehicle (ASV) project of the Ministry of Transport, the Advanced Cruise-Assist Highway System (AHS) project of the Ministry of Construction, and other government-led joint projects.
Nissan’s Safety Technologies concerning ITS

Information Safety

Drowsiness Warning System and Drowsiness Relieving System

The Drowsiness Warning System uses a camera mounted to the instrument panel to monitor the blinking pattern of the driver’s eyes to detect drowsiness at an early stage and issue a warning sound. When the Drowsiness Warning System detects that the driver has begun dozing off, the Drowsiness Relieving System emits a warning sound, turns on the air conditioning, and releases a stimulating mint fragrance to awaken the driver. This system can also be activated manually by pressing a switch, so that the driver can release the stimulating fragrance when he or she begins feeling drowsy.

Obstacle Warning System

This system detects objects in front of or behind the vehicle, such as a vehicle or an object on the road, and, depending on the object’s proximity, emits a warning to alert the driver.

Objects behind the vehicle can be observed with a camera mounted in the door mirror. There is also a radar device in the rear bumper that monitors the distance of rear vehicles, during lane changes, etc., and activates the warning system when a vehicle is too close.
Information Safety

Preview Corner Monitor System

With a camera mounted in the center of the front bumper and connected to a monitor inside the vehicle, the driver can see objects in blind spots when entering intersections with poor visibility (such as when the road is narrow and surrounded on either side by walls), or when leaving a parking lot or garage with poor visibility. By helping the driver visually check the vehicle’s surroundings, this system also increases peace of mind. The cleverly designed optical system allows a single camera to show both the left and right sides simultaneously on one monitor. And since only one camera is used, unnecessary exterior appendages are avoided and costs are kept low. In addition, the monitor can be shared by car navigation or other systems.

Control Safety

Emergency Braking System for Driver Impairment

When the driver fails to regain a safe level of alertness even after the warnings and precautions of the Drowsiness warning system and Drowsiness relieving system, the vehicle’s decision circuit, assuming that a driver is in an abnormal condition, turns on the hazard lamps, etc., to warn other drivers, and automatically stops the vehicle to help reduce accidents. This system can also be activated manually by the driver - for example, during the sudden onset of a health problem.

Automatic Braking System for Reduction of Collision Speed

This system automatically applies the brakes when it determines that a collision is imminent in the event the driver fails to take evasive action after the Obstacle warning system has emitted its warnings. The objective is to reduce the collision speed as much as possible.
ASV (Advanced Safety Vehicle) is being promoted by the Ministry of Transport. Nissan participated in Phase 1 (1991-1995) of this project, and is now participating in Phase 2 (1996-2000). In addition to stepping up R&D efforts toward the practical implementation of the technologies that were the focus of research and development during phase 1 (side airbag SRS and a water repellent window coating system have already been implemented), Nissan is actively involved in R&D on “Autonomous Driving Technologies” and on “Fundamental Automotive Technologies” such as the optimization of the human-machine interface. The various technologies being developed as part of Nissan ASV are guided by Nissan’s Triple Safety concept.

Use of main ASV devices developed by Nissan (Phase 1)

Active Safety Technologies

1 Drowsiness warning system
2 Drowsiness relieving system
3 Emergency braking advanced advisory system
 - Brake lamps are illuminated even before the driver braking hard in an emergency, thus advising the driver of a following vehicle to take evasive action.
4 Obstacle warning system
5 Adaptive cruise control system
 - If the driver approaches too closely to a preceding vehicle, the speed is automatically reduced to maintain a suitable safety distance.
6 Pedestrian monitoring system
 - This system detects and alerts the driver to the presence of pedestrians at night as well as in vehicle blind spots.
7 Headlamp illumination pattern control
 - Nightime visibility is improved by controlling the headlamp illumination characteristics according to the driving conditions.

Accident Avoidance Technologies

8 Emergency braking system for driver impairment
9 Automatic braking system for reduction of collision speed
10 Lane control system
 - In the event the system detects and determines that incipient lane deviation is not the driver’s intention, it issues a warning and automatically steers the vehicle, if necessary, to prevent it from leaving its lane.

Automated Driving Technologies

11 Integrated safety system vehicle
 - Integrated control system is performed to make full use of individual safety systems and thus obtain optimum safety capabilities. In addition, Nissan also intends to direct R&D efforts toward autonomous driving systems that would preclude human error and automated driving systems based on the use of the roadside infrastructure.

Impact Safety Technologies

12 Pedestrian protection vehicle body
 - By improving the energy-absorbing capacity of the vehicle body, Nissan intends to reduce the impact applied to pedestrians in accidents involving them.

Damage Containment Technologies

13 Automatic emergency reporting system
 - If an accident occurs, the vehicle's location is automatically reported to a traffic operations center via the vehicle's cellular phone or some other wireless link to facilitate immediate rescue action, including a request for dispatch of an ambulance.

Fundamental Vehicle Technologies

14 Systems tailored to human-machine interfaces
 - The ways in which safety systems issue warnings and execute control operations will be optimized from the standpoint of compatibility with human-machine interfaces.

* Indicates an issue begun in Phase 2
AHS (Advanced Cruise-Assist Highway System) is a support system that links the vehicle to the road in an advanced, intelligent way – with warnings, cruise assistance, and other features that support safe cruising. The ultimate goal of this project is automatic cruising that is both safe and comfortable.

AHS was launched by the Ministry of Construction in 1989 with private-sector participation. In 1996, the AHS Research Association was founded with 21 participating private corporations to further intensify the quest to develop a working, practical system.

Nissan has been actively involved in AHS-related research and development since the project’s start.

In September 1996, in Komoro-city, Nagano Prefecture, a demonstration of an experimental AHS vehicle was carried out on actual roads for the first time in Japan.

Below is an overview of the features of the Nissan AHS vehicles used in that demonstration.

Information Provision Service
- Road condition warning systems: accident, road obstruction, and traffic congestion reports, etc.
- Miscellaneous warning system: safe headway, excessive speed, and lane deviation warnings, etc.

Control Support Service
- Adaptive cruise control
- Collision prevention: Automated braking using information from on-board sensors and roadside LCX (leakage coaxial) cable

Automated Cruise Service
- Automated driving guidance using magnets imbedded in the road surface
- Automated acceleration/deceleration guided by LCX
- Platoon driving

Research on Human Behavior at the Nissan Cambridge Basic Research

As part of this work, Nissan established the Cambridge Basic Research (CBR) in Cambridge, Massachusetts in the United States in 1992. With the cooperation of American universities and research institutes, CBR is engaged in research on recognition, judgment and functional comprehension during driving. Nissan makes extensive use of the results of this research in designing and engineering new vehicles and systems.

An example of research:

Nissan studied how people remember roads. This research revealed that people can be divided into three groups with respect to how they remember roads: those who remember distinctive turns, those who remember routes in sequence, and those who can remember where they have been as clearly as if reading a map. These results suggest the need for different types of guidance for different people, and also indicates the importance of basic research.
Nissan’s Traffic Flow Simulator

As traffic congestion tends to cause accidents, Nissan has developed a traffic flow simulation model capable of forecasting traffic conditions and suggesting ways to ease congestion. This system, which uses computers to represent actual traffic flows, can examine the cause of congestion and evaluate the congestion-easing effects of road construction and traffic signal optimization. This system is being used to analyze traffic conditions in Yokohama, Yokosuka and other cities with the cooperation of the Kanagawa Prefecture Police, etc.

Urban Traffic System for Ultra-Small Electric Vehicles

New types of vehicles will be required as a means of personal mobility in urban areas in the future. Such vehicles will have to be designed to minimize energy consumption, air pollution and the space they occupy.

Nissan’s ultra-small electric vehicle is designed in accordance with the zone body concept and so, despite its ultra-small size, delivers the same impact safety performance as a conventional small vehicle.

In “community zones” of residential areas, systems like the Zone 30, an ITS-based roadside-to-vehicle communications system, will be used to automatically control the maximum speed of vehicles passing through those areas. This system will ensure convenient door-to-door transportation that also promotes safety and keeps noise levels low in the driver’s neighborhood and the residential areas visited.