NISSAN MOTOR CORPORATION

Development of Resin Impregnation Simulation on Compression-Resin Transfer Molding for Mass Production of CFRP

Atsushi Mizutani Expert Leader Production Engineering R&D Center September 3, 2020

Background

Background

- NISSAN GREEN PROGRAM aims to reduce CO2 by 40% until 2022 and 90% until 2050 compared with 2000
- Promotion of electrification and vehicle weight reduction to meet strict environmental regulations

Calculated independently based on the survey results of the IPCC Fourth Assessment Report

CO2 regulation by country and region

After 2022, regulations become stricter, and EU has the strictest regulations after 2025

EV and vehicle weight

Vehicle weight will increase due to battery and motor inverter for EV

Multi-material use for future vehicle body

 Realizing further weight reduction by multi-material application for future vehicle body benefitting of each material characteristics

CFRP Technical challenges

CFRP lightweight and strong material

****CFRP: Carbon Fiber Reinforced Plastic**

- Carbon fiber is thinner than hair, has excellent strength and rigidity, and is 50% lighter than steel
- CFRP is carbon fiber solidified with resin

<Carbon fiber reinforced plastic >

500 400 400 400

Resin Hardened

Source: JCMA Home page

Material	Specific gravity	Strength (MPa)	Specific strength (10 ⁴ m)	Elastic modulus (GPa)	Specific rigidity (10 ⁶ m)
Steel	7.8	780	1.0	210	2.7
Aluminum	2.7	370	1.4	72	2.7
CFRP	1.5	600-1,600	4.0-10.7	60-120	4.0-8.0

CFRP body part adoption in Nissan vehicles

Currently used exclusively in the GT-R NISMO

GT-R NISMO 2020 model

Challenges of CFRP application for automotive parts

- Challenges are cost and productivity; the cost is about 10 times higher than steel parts
- Manufacturing process is complicated, and molding time is long

*Pre-preg: The sheet of carbon fiber impregnated with resin beforehand

Lamination design

Innovation of production speed in molding

- The production speed has significantly improved in the last 10 years
- Further innovation of molding method will improve speed

Technical issues in molding

- Wrinkles and deformation occur when carbon fiber sheet is pressed
- Necessary to impregnate the resin before it hardens

Flat carbon fiber sheet transforms into three-dimensional shaped parts

Press

Carbon fiber sheet

Test part (Center Pillar)

Wrinkle is generated

NISSAN

Resin stiffens while flowing in carbon fiber sheet

Video of C-RTM

Scheme of molding method

Development of Nissan original simulation on C-RTM

Technical challenges of C-RTM

A long development period and significant amount of cost is necessary for trial and error to manufacture parts and dies that meet design requirements, material types and production goals

%CF: Carbon fiber

Technical challenges of C-RTM simulation development

- The final impregnation results differ between simulation and actual experiment
- Difficulty in predicting resin flow and transfer

C-RTM simulation development/Flow friction resistance

Frictional resistance of the resin flowing over a carbon fiber is considered as a calculation parameter

Identify the relationship between carbon fiber and the flow of the resin using a

transparent die

Transparent die

※From the top

Flow on steel

Flow on carbon fiber sheet

C-RTM simulation development/Temperature of the resin

- Visualize the internal die resin flow by detecting temperature change due to resin introduction
- Calculate the impregnation fiber coefficient logic according to the thickness of the fiber sheets

Results of new resin impregnation simulation

- Improved simulation result accuracy
- Reconsidered gate and groove shape, developed CFRP parts to satisfy performance and quality tolerances

Experiment and simulation results>

<Development by new simulation>

Actual

