NISSAN HE

TECHNICAL ©25f

vyobkozxz7?
Software

NISSAN MOTOR CORPORATION

2019

=]

132

NISSAN TEGHNIGAL REVIEW

No. 84

HERHmFS

20194-3 1 34T

& BES
“YTRITT” (EEEEEHTEDTT ULV TS U oo, BB e 1

®EE:VINUIT

1. BECBIFRY I bU 7 A0FDHH EMICICUBEIEDARS -ooevereermeeereieeeee ik R e 3
2. BEHRRATY — JUDBTRE -+ verveereersersemseeseensenteetetente sttt BANERIT - i)l B e 8
3. H—E AT —FFIF v ETIVTADIGH +oveerreerreerreesensnnnieeseeseeneesseessesssesns Yl S ooeeee 17
4, EIENEEICBITBH AIN—TEIE D U T o crvervrrrereereeneenienieaie st R A e 21
5. SAT YV JLINE ZDRGHRI +oveeveereerresemseesseseneeiesese ettt SERF Py e %

6. VINY I 7 mEREDCHDY TS A VEIREE) ---voeeerreerrrrereeeenes Al R - A SERE

7. EHY T MY T THERCBII DN A VT IU—T 3V (Cl) DA i 2l e

8. YT R T T RU—S TS ceeerreeenrereniiiaaniieeniinennns A 2 - BAJIZERIT - B HR eeeee
@ FETHBMTEIESEI—EGTR +voovoverrerrerrerseeee ettt ettt ettt b ettt
& ZERINTHE

9. E-YN\S XY DOEFERKFIEZERE LA AEAIZRNBRE—5 0BT
Mg SRR & - EAARIEST - A

37

Nissan Technical Review No. 84 (MARCH 2019)

CONTENTS
@ Preface
Software—New Literacy Requirement for Automotive Engineers «ococoocoorrorrrrrrrieie.. 1
By Shunichi Tovomasu
@ Special Feature : Software
1. 40 years of Automotive Software and New Requirements for Software Engineers at Nissan-----+--- 3
By Kazuhiro IsHicami
2. DeVelOpment Of a Statlc COde Analysis TOOI .. 8
By Miwako Hasecawa, Satoshi Icnikawa
3. Service-oriented Architecture and its Application to Vehicles «rerorrrrrrmrrrmrrmrnen 17
By Toshiyuki WATANABE
4. Cybersecurity fOT Automotive Systems .. 21
By Masaaki MIvASHITA
5. SA’I‘ SOlVer and Application EXampleS .. 26

By Junsuke Ino

6. Activities to Improve Software Quality through Supplier Management: -««««-xrororremrreeee. 32

By Naoki Arisaxi, Yukiteru YAMAMOTO

7. Application of Continuous Integration to Automotive Software Development -«wwcorreerreeemeeeeee 37

By Yoshinobu Ito

8' Software Training Cel’lter .. 45

By Yukiteru Yamamoro, Miwako Hasecawa, Yuji Ono

’ List of Technical Award Recipients ... 50

@ Technical Award News

9. Principle of Variable Leakage Flux IPMSM Using Arc-Shaped Magnet Considering Variable Motor
Parameter Characteristics Depending on Load Current ... 53

By Takashi KaTto, Toru MaTsuura, Kensuke Sasaki, Tsutomu TANIMOTO

v

.
& BH

i

“V7b927” ZHEBHEBEME D
TLW)F5 3 —

Jrua— & B

STEFORNE [~ T v Y AFHHT] 55% T2, F 7 ¥ 7 h05 A <o ook fif 1] 1% % BRfd L ¢ Hii
BEMAEEL, TOMELRIEFA T THERS 7 7 v BEEOHIHEZIToCWE L. L2L. 20
7 a7 REERFHIPERFERSCEEFER L CIIERASH) £ L7,

FLRL VL Z80R~YA A ORMAEHBLE L7z, 8y N TAEY HEIIMEN32KB T L7
A, ELAARME R E O AT A E TENE TILEVHHEOH WA EONE L, 20
B. —RITAAZ) = MAKE~Y ATV T by 2 TICEERDY F L, FAUEREEEC, V7
F7 27 NFTEDOHWOBTEYTLHN) T L7,

V7N o TIEHROBECEHFEZRMEE T ERBIE S I BAELET, V2T 0%
M BEDPERFOBERTHY . ZOTHLIIMO TEETY, — 5, IO IV~<IECa— FHfE T4
THITZBA5V 7 727 THEELTWE T, HEREREMO 7 2 ZIZHEK SN TW LT v 7
FE2IMM A TTA, FORICHAEO N T vV A BEFEINTWE T, OS (Operating System)
bV TIVE A L0SIZHNZ T, Linux® Android & #4 T3 o T, FAIWEV 7 Mo = 7 OIS
FRENT. VI V2T EHITL0H 5B EIRT 2 0ENH Y £, [BIFH~ & —
DAY MTRETORL ALY — VEREEM] g7y —] ofuT, AFEIIV I
T M A DFOWNIZT 5 2 EDIFETT,

ZDDIIFHAE, FT VAT LAY =ZT7) Y7 ERER L CHEDOE & 7 5 B3RO0 - ki
o “B25Mt" IZETFLEL RIETT—F77F v OG- —ARMLZXD ., {£ECU (Electronic
Control Unit) @V 7 b7 = THREEIMS T2 FHEFR LT L7zo SHITIEETIVAR—ZAFFEEAIZLD,
FORMAMEZET NV E T Uy T 40— FCENREICT 5 L300, Wiz md 5V 7 by = 7EEHli% 7
AN F)FFHTHEEL TWE T, —FHTEHHO HEHEHAME 1213, Autosar OS % SoC (System-on-
a-Chip). YV F a7V Lk E, K VFEKRNLR Y 7 MYy o 7HEMT L AR SN E 3,

ZZC. "7 by 27" BHBESMEOHF LY 77— LiGmfg, BEE T2 HM L
THHEMENY 7 Ny 2 T M 2RI T B0 [VI7 vy 2T bL—ov by s] 2L
FL72e AVF2TLEY T THEIRASINDHEH TS, ~ A 3> /HlilBGw V7 by o7 E8E%x
FO, £ 7Y —)VMATLAB / Simulink Z ffio T7 0 77 A %55 L. I — AR #a—
RfEdT & HILS (Hardware-In-the-Loop-Simulation) #Fflilc A& THOEH T "G »RkOLNF T,
FEEDNLIE, HOOWMEXHODPEKT L LIS, FUOOREZHYHSEL~SEBAIHET LT
WCBDORHAVREN TV E T, 4, FHH 100 BB OFHET, o507 AKR—F VI v)V
HE WOy 7 b7 ARy b =280 Bd v+ Y =3 sn g 4,

V7 b7 2T LFEONA TV ESFEbNsERE [A\HOMEE] 120 "B ARE /I LT HEEN
R L Z2vee A (AED) & A (KRR 25CHITREL WO KBTI TR S W Eh D FT, [BX
FRICHER S A iRBE L MifitE] %2 THREOH A mE] TRET L7012, FTxlxVy 7 by = 7RIS/ ST —
TGS ORISR EALEA T B R BRE 2 o THERICE O TV E 95

1

Prefatory Note

Software—New Literacy Requirement for
Automotive Engineers

Shunichi Toyomasu
Fellow

Thirty-seven years ago I was holding a copy of the “Transistor Technology” magazine in one hand
while making full use of an operational amplifier summing circuit and an absolute value circuit to calculate
the thermal load of a vehicle cabin. The results were used to control the temperature control door opening
and fan speed of the air-conditioner. However, analog circuit designs were limited with regard to solving
mutually exclusive events and compound events.

Soon after that the Z80 microprocessor also began to be adopted on vehicles. It was an 8-bit
microprocessor with a tiny memory capacity of 32 KB. Yet with an understanding of interrupt processing
and other commands, designs with many more degrees of freedom than ever before could be obtained.
Subsequently, discrete circuits were replaced overnight with microprocessors and software.
Simultaneously, that also marked the beginning of the battle with software bugs.

Software is clearly different from the natural sciences that are founded on the laws and fundamental
principles of nature. The sources of the design are the ideas and thinking of software engineers, and it is
extremely important to visualize them. Meanwhile, the latest vehicles operate by means of onboard
software consisting of over 40 million lines of source code when converted to a C code equivalent. The
recognition chip embedded in the cameras used in an autonomous driving system is merely 9 mm by 9
mm, but one million transistors are integrated in that area. There are a variety of operating systems (0S)
such as Linux and Android, in addition to real-time OS. Therefore, it is necessary for us to transform our
development organization into one that has the capabilities to master software without being dominated
by its complexity. It is essential for us to steadily gain a mastery of software technologies from the
perspectives of managing technological development, putting in place a development environment with
the necessary processes and tools, and strengthening engineers’ competencies.

Toward that end, we began using systems engineering to visualize the required analyses and required
specifications that are the essential foundations of development work. We then integrated and unified the
electronic architecture and redefined the allocation of software functions to each electronic control unit
(ECU). Furthermore, as a result of implementing model-based development, we made it possible to
convey the required specifications in terms of models and program codes. We also strengthened our
abilities for software evaluation, which has become exceeding complex, by expanding and improving our
test scenarios. On the other hand, in the years ahead automotive engineers will need to have more
practical software capabilities and knowledge, including the ability to skillfully use AUTOSAR OS, system-
on-a-chip (SoC) and multicore technologies.

We concluded therefore that software represents a new literacy requirement for engineers
specializing in automotive engineering and established the Software Training Center so that they can
acquire a mastery of software technologies. The curriculum consists of rigorous courses that challenge
the capabilities of the trainees. After learning the basics of microcontrollers, control theory and software,
trainees design a software program using modeling tools like MATLAB and Simulink, generate the source
code, and evaluate it using static code analysis and hardware-in-the-loop simulation (HILS). They are
required to pass all these courses in the software development process. Graduates of the Training Center
have said that they could truly feel the progress they made and that they plan to actively apply what they
learned in the development work they are responsible for. We plan to graduate approximately 100 trainees
annually in the coming years. It is expected that their exponential contributions and networking with
software engineers will be effective in producing significant synergies.

The author of “The Mythical Man-Month,” which is the Bible of software engineering, says that simply
doubling the number of men won’t halve development lead time and that one should discard the myth that
men and months are interchangeable. We have positioned software development capabilities as a new
source of competitiveness. We are continuing to improve our capabilities under a clearly defined strategy
in order to supply functions and value that resonate with customers and possess quality in which we have
confidence.

¥%8E Special Feature

sk ok ok sk ok sk ok ok sk sk sk sk sk sk sk sk sk ok sk sk sk sk sk sk sk sk sk sk sk sk sk sk sk sk sk sk sk ok ok sk sk sk sk sk sk sk sk sk ok sk sk sk sk sk sk sk sk sk sk sk sk ok sk sk sk sk sk ok ok ok ok ok sk sk sk sk ok

HEICHIZDYVI U7 40FDEHE
FCICREETEDAM

40 years of Automotive Software and New Requirements for
Software Engineers at Nissan

DAV N ENE R
Software Engineering Department

Ak MR

Kazuhiro Ishigami

s ok ok ok sk sk sk sk sk sk sk ok ok sk sk sk sk sk sk sk sk sk ok sk sk sk sk sk sk sk ok sk ok ok sk sk sk sk sk sk ok ok ok ok sk sk sk sk sk sk sk ok sk ok sk sk sk sk sk sk sk ok sk ok ok sk sk sk sk sk sk ok ok ok ok sk sk sk sk sk sk sk ok sk sk sk sk sk sk sk ok sk ok ok sk sk sk sk sk sk sk sk ok

1. FUBHIC —EFHY T MO 7 40FEDEH —

HEA#EA, ~f7uar¥a—y %Ly
~ #I# ECU (Electronic Control Unit) % Hillix L 7z d 1%,
19794 D 2 & TH B, 4308t K v 7 [[IFL2SE# = >~
VURIZ, ATy 7 by TR RSN, Dok, BX
FAVLEDREME L 725, Bk E LCHEIRY 7 by o 71
RKO—#xE/zEoTHBY, SHTIIEBEIZE > TRbE
BT /uyn—okhoTnh, 22T, 7., H
YT M T BA0ERICED L) ITELLERATE
DOPEIRYESLZ L L7z,

11 YIRIT7DILK

Oy T VHBECUIHE RSNV 7 72T D
A4 RE, BEE0TRETH 720 2OV T Mo
78K/ A FDROM (Read-Only Memory) 2. 7—%
QEOTHFEEINT, Ty T UREHEE, TL—F RN
DOEFHHEOBA L, FZEOHME L KIEIZ RIF5Z &5
TE, F/o, MLl EIT) 2 & T Ah TN
HEM O ML — A 7REE R T 52 L3 TE 2, D7
O, V7 b TR BTS2 OV~ O KA
WaeL#EAINTVo7, MUCHERBHEIZBITLY 7
Ny =7 & RGBT HIE O R 2 R, 2ok
INZI9904ERLIRE, B2 7 V< DE ALV HER, VT

R T e e s

1980 1985 1990 1995 2000 2005 2010 2015 2020
T T T
evDC |

® Engine control
® AT control @®Discharge lamp @Motor inverter
. ' ' I
® ABS | @ Gasoline direct injection
. | | | |
® CAN communication

@ Tire pressure monitoring
.]) \

@ 4-wheel steering
@ Navigation

I I
‘ O EPS ® Regenerative braking
® Airbag ! :
| I

@ Intelligent key

[] ISuspenslion conltrol
® Immobilizer

I,
| | | b Lz‘me-keellamg [] Slteer-byl-wire
' I

-1 HELCHIFZDZEEA—IUVI FOZIRDEAE
Fig.1 Implementation of major car electronics on
Nissan vehicles

@ Lithium-ion battery

1. Introduction—40-year history of onboard software

Nissan first marketed an engine electronic control
unit (ECU) incorporating a microcomputer in 1979. A
software program was implemented for controlling the
L28E engine mounted on the 430 series Cedric sedan.
Approximately 40 years have passed since then and onboard
software has continually been expanded during that time.
Today, software is one of the most important technologies
for vehicles. This article reviews how onboard software
has changed over the past 40 years.

1.1 Expansion of onboard software

The size of the software code installed in the first
electronic ECU was approximately 3,000 lines. This
software, including the data, was implemented in an
8-kilobyte read-only memory (ROM). The application of
electronic control to the engine, transmission, brakes and
other vehicle systems greatly expanded the degrees of
freedom for development work. In addition, fine-tuned
electronic control made it possible to resolve trade-off

B R T e e

Software code
(KLOC)

100,000

10,000

1,000

100

10

1980 1990 2000 2010 2020

X-2 HEEDEHY T Y7 OTH
Fig.2 Embedded software size in kilo lines of code (KLOC)
on Nissan vehicles

3 NISSAN TECHNICAL REVIEW No. 84 (2019-3)

HECBIIZY T hU 17 A0FDHH EMEICHBRELEDAM

MY = T OFERWEIIR L To Tz,

BN 7 by 27 OB EOHERZ X218 T, 2
DEHIZII9FICB L 7300017 TrHrE-72V 7 by T
PR IE, 20134F 12123000 54712 L, 404EM CT1I s
otz LA, V7MY 7 ORETHEOHTIE, W
S ODDOEHMHAMIZH L DD, KKRELTEHLEY T
M 27TV =2T7I2E B AT TORFEITKTE L T b,
CDVT N7 TREICLEE D LHO KRR KA,
HEJHEA—=7I2EoT, mBEHTHIAINATHORELHA
HE o TETWD,

1.2 BEHFHYV T hD 7 OEATREL

ZZETY 7 MY 2 7 OBBERIZ O W TRz,
DU Tl B 212 oW TR %,
121 EFILR—ZBEHE (MBD)

19904E D T A LI, Y 7 by = 7 ORFEFE
iE, B OHEAL % 72 & B 19794E O B HK B 44 FF 1 T
7{/7U§%#mw%ﬂto%®%w%$ﬁ lb\
BRIZCEEMRAEIN TV -2, 22 F TIREHKIID
ALY 7 b 2T OMALER L TH B, L, I
A oMb oEx 728 4, Z1tid. MATLAB/Simulink
ETNVEHVZMBDY THhs (M3). FFIETROHE
V7 b7 Tld, iR MATLAB ETiTH 2 & T
BEAICHIE T Y v 7 2 TE 5, MATLABZ FiVv %
ELFOBTYIaL—3a v)T ENTELDT,
YIial—Ta UiERERIET VT ALIZT 4 — KNy
73AHZET, REICHIEI 7 L TY) A EBERT A2 LA
T&bo EONLTNTY ZAHhS, HERENTY —A
I— FRAERTEIUL, B2 6NE, 2D &
) RREMEN S, EWOETRY 7 by 2 7 LT
MATLAB % H\W 7= MBD2SIEH &N A L) 1272,
1.2.2 AUTOSAR (Automotive Open System
Architecture)

2000EMICALE, MBDR 25V T NI 27T T
N7 % —2 % LT, AUTOSAR OSHIE DR EI T DN

T I I R I L e e e g

Transmission control model

clutch_control

@ mn
shift_points shift_logic
.—».3 inh
gear gear asol (1)
—>|gear down_threshold|—>| down_threshold 1-2up 1-2 upshift asol
2-3 up 2-3 upshift
3-4up 3-4 upshift
4-3 down 4-3 downshift
throttle up_threshold [—>| up_threshold *2 9™ Sttt
2-1 down ol
throttle) bsol
vehicle_speed bsol

vehicle_speed compute_threshold,

X-3 #ERRFTY 7 hD 7 MATLAB €5 /LO—HI
Fig. 3 An example of a MATLAB model

problems between performance attributes that were difficult
to resolve mechanically. For that reason, software-based
electronic control has been applied to vehicle components
one after another. Figure 1 shows the years when Nissan
began to apply software-based electronic control to major
vehicle components. As indicated in the figure, automotive
electronics advanced rapidly from the 1990s onward and the
volume of onboard software has expanded accordingly.

Figure 2 shows the specific increase in the volume of
onboard software on Nissan vehicles. Software code that
began with 3,000 lines in 1979 had increased to 30 million
lines by 2013, an increase of 10,000 times in 40 years.
However, software development still continues to depend
on the human labor of large numbers of software engineers,
though several innovative tools have been achieved in
the area of software development methods. The drastic
increase in man-hours needed for software development
has become an enormous burden for vehicle manufacturers
in terms of both quality and cost aspects.

1.2 Evolution of onboard software technologies

The increase in the scale of automotive software code
was described in the preceding section. The following
discussion will describe the technical changes that have
occurred.

1.2.1 Model-based development (MBD)

Automotive software development methods have
evolved along a unique path since the mid-1990s. Assembly
languages were used in 1979 when Nissan started applying
automotive software to vehicles. Subsequently, C language
gradually came into use in the 1990s. Until that point,
onboard software had evolved in the same way as other
embedded software for non-automotive applications.
However, it began to follow its own unique path of evolution
from that point on, namely, MBD?® using MATLAB/Simulink
models (Fig. 3). For the software embedded in the driving
systems of vehicles in particular, executing the control
design with a MATLAB model facilitates efficient creation
of the control logic. Using a MATLAB model allows a
simulation to be run on the spot. The simulation results
can then be fed back right away to the control algorithm,
enabling early completion of the algorithm. Efficiency can
be further improved if the source code intended for mass
production can be generated directly from the resultant
algorithm. That is how MBD using MATLAB models came
be actively employed for developing the software embedded
in the driving systems of vehicles.

1.2.2 Automotive Open System Architecture
(AUTOSAR)

The AUTOSAR operating system standard was
established in the early 2000s as a software platform
supporting MBD. An application is designed using a
MATLAB model and combined with AUTOSAR,? a
software platform for supporting applications, to complete

H ZE ¥ #R No.84 (2019-3) 4

40 years of Automotive Software and New Requirements for Software Engineers at Nissan

72o 77U —3 3% MATLABEF IV CREEIL, 77
Vr—2av% %257 NI2T7 779 74 —LTdh
5 AUTOSAR? L#laahbe T, #liAAV 7 vy Tk
LTRSS, ZDOAUTOSARIZ, HEIHEIZLERY
T A LAY R — Mg 57280, AUTOSARHEH O
HETR e AR A RS & 7 5 T b, AUTOSAR & HEH
EHMEOMALD—D L IERZ LN TE D,

2. BEEEFROEHNTVDIKREHITROS5ND
VI I T T A

iR L7z X912, HikRy 7 b= 7 o RE ORI L
VW, INEBISE LWHEERET 72005 v — A b KiE
WZHEIL T e F72,0 HAHHIZIZMBD % AUTOSAR
Vo - HEJEEREE OMIAL Y 7 b7 7T AE A
ENTE/o, BEEERMTOHEHY 7 by 272y
VETHREICLEE > TER, 2D L) IR,
BEHBIE X —) &4, =00 72 7% OB &
HTW5, Ziud, BEML, B8R, 242774 K-
BHhboe INHLOFEBIIZV T M T 2T HREL DT
Whe FN, FEROMIARY 7 by 2 THTE I3RS
OV 7 by 2 THEMARO SN TS, 2Dz, H
BHSERCIE, SNF TOHBEEITHAAY T by 2T
Iy T7) NMITINZ T, Fiz o v 7k
T NMDSRD HINL L) o7z0 LIRS, Fi7zlke
SNLRERZ Y 7 b T HMT S A Z LR 5,

21 AVH—y NEEDY T D T 7 AM

X7 TA A=A =y NP LEL 25D
FEHE LW D, FRUS O TL, 1 v 5 —%
MEMATHBEANTIIISH SN TE TS, —fFl& LT,
WK S L & 7 o "CHRTE & AU 72 TE B B o 72 B 1) A 0
f§7a b3V CTHh5ISO/IECISI8 GHliFR - I 2 K) 122
W B9 %, ISO/IEC1I5118 Tl W 22 DIETF
(Internet Engineering Task Force) DE& 72RFC (Fifr
B B ENTWE, 728 218, TRlORFC %4 K —
NS LB D B

e RFC1981 : 7S AMTU T 1 AJ1/31)

e RECH722: A —/N—=F v VU TP T7 I 7 A |k

* RFC4443 : ICMPv6

UL, INHDOA v F =3y MR OHRRE L
Tt BEHHEEOLESHY 7 b7 2 72 H%T 52 L8
TELRWI EZFRL TV,

COEHZ, IETFEA ¥ & — % v b ORI % 2
FT L7200, WRGEHORFCZHIEL TS, Thn
SOHBHEMITOY 7 by 27 AMIZIE, SOL) %A »

the embedded software. AUTOSAR is configured with its
own special dedicated system for supporting the real-time
control required by vehicles. AUTOSAR can be regarded
as one example of evolution unique to the automotive
industry.

2. Current Situation of the Automotive Industry and
New Requirements for Software Engineers

As described above, software development tools have
also increased significantly in order to develop and confirm
the quality of automotive software that has vastly expanded
on vehicles in recent years. Because MBD, AUTOSAR
and other embedded software technologies specific to the
automotive industry have been adopted, there has been
a need for much larger numbers of software engineers
specialized in automotive industry applications. Amid
these circumstances, all of the vehicle manufacturers are
currently proceeding with development activities in three
new fields. These are vehicle electrification, autonomous
driving and vehicle connectivity. Software is playing a
large role in turning these technologies into realities.
Moreover, the software technologies required in these
fields differ from those of conventional embedded software.
Consequently, the automotive industry needs software
engineers in these new technical fields, in addition to the
software engineers who have been developing embedded
software for vehicles to date. Typical examples of newly
required software engineering fields and requirements for
software engineers are described below.

2.1 Internet-related software engineers

It is obvious that Internet technologies are necessary
for vehicle connectivity, but they are also being applied
to vehicles in other areas as well. The communications
protocol specified for controlling EV charging is explained
here as one example. This protocol has been largely
defined by Europe and the U.S. in the ISO/IEC 15118
(Combined Charging System) standard, which makes
reference to several Requests for Comments (RFCs)
issued by the Internet Engineering Task Force (IETF).
For example, the following RFCs must be supported.

e RFC 1981: Path MTU Discovery
* RFC 5722: Handling of Overlapping IPv6 Fragments
e REFC 4443: Internet Control Message Protocol (ICMPv6)

This means that software for EV chargers cannot be
developed from now on without knowledge of Internet
technical standards.

As indicated here, the IETF has issued an enormous
number of RFCs for the purpose of defining Internet
technical specifications. It is expected that software
engineers developing code for vehicles will understand
these Internet technologies and have the ability to create
software accordingly.

5 NISSAN TECHNICAL REVIEW No. 84 (2019-3)

HECBITZY T hU 17 4A0FDHH EMEICHBRELEDAM

& — 4 M2 EE LAEY BT SRS TY
%o

22 BAN—EFa1UTBEEDY I NI T AWM

IR T A RA—134 ¥ & =4y Ml E R— 2 IR
ENTWED, A ¥ =%y MEH A N—tF)74
MWOXLDTH Do FEIZ, KT PNy I —12LbEFa
)5 14 %1~ 7 7 L ¥~ ABlack Hat USA 2015 T Jeep
Cherokee /Ny ¥ > 7 IZBT A5 5K1E. HEJHEEFICK
EREBEY SR 720 HBETHA Y5 — 4y kO
AN=—F 2)T AFRPRKDOENL Lo OF
0. RS RREZ 12D O AT AR S L E L W»
HIZETHA,

CNFTHEIE A —HTld, HNL Y M7 — 274
EOT =T A MAFIZIE, bBEAAL YV ZTHFIEL
TWeAs, HEJEEAREICY A N—tF o) 7 1 Bl &2 /0
AG72ODLY V2T EVHEIETIE, ZEAERELT
otz L. R AN—tF 2 7 1 55
oo LOREBICH . 2D L)1, HLVEBHE
FOV 7 727 AMELT, FANN—F)74
TET R RD LN TV B,

2.3 BIEFEMBEEDY T NI T 7 AM

aARTTA RH—DY AT 2, BEKO—EBIHETE
S X B RERE VT B, B EAS EEA o W E
VAT AR ERLA v =3y MEELARE OBt E
FIFAB DT> TWABLOD, KKRE L THBEOHEED
FIEL T 5, F72, EREELSHEEI N TR, &
RS & o THAATE R OMED TR0, i K —
MRS R 25 = ADE L RbNb, 72, BEHIC
EHIREEEE S AT 4 (5G) DEAPHED LN TV D
A5, I S FA X B OB FA I 2 L KR Y
TJhrzT7lEy PCHEEENTWD, LT, T47
TFA A —DY AT A, 2D XD R BERA % Hidt
ELTHFIENT WD, ZD7-0, WEHMT OB VE
Thb, ZOEHI SHROBHEMFTOV 7 b7 2T A
e LT, #mmEE I Lo s LilERiEamL
TRNT 2TV IZTHRDENT WD,

2.4 Linux - Android BEDY 7 Y = 7 AK

A YT+ T4 AV DY AT A, EFEMEOE
R TB N 200080 % 8 2 5 W & HA L. o i
RERIRECEDLIEDROONL, TD L) BT, b
DEREEDTHHER BV DL R -TBY ., KAV
ThI2TONEN o TWnD, ZOERKS 757
AVAVINYATFADR—=AER LI T V2T 7T b

2.2 Cybersecurity-related software engineers

Vehicle connectivity is built on the basis of Internet
technologies, and cybersecurity is indispensable to the
Internet. A presentation concerning the hacking of a Jeep
Cherokee, which was given at the Black Hat USA 2015
security conference of white hackers, gave an especially
large shock to the automotive industry. Vehicles are also
required to have cybersecurity measures now equal to those
of the Internet. In other words, cryptographic technology
and system design methods based are cryptography have
become necessary.

Heretofore, vehicle manufacturers have naturally
had engineers who have been developing software for the
company’s internal network and website. However, they
have had hardly any engineers involved in implementing
cybersecurity technologies on vehicles themselves. Yet
the situation today does not allow any waiting for full-
fledged cybersecurity measures. Consequently, cybersecurity
engineers are strongly needed as a new source of software
engineers for vehicles.

2.3 Communications technology-related software
engineers

Connected vehicle systems use the communications
circuits of mobile phones as part of their communications
channels. While efforts are being made to enhance
the affinity between the communications systems of
mobile phone communications circuits and Internet
communications specifications, there are still some systems
that have their own specifications. Moreover, while
international standardization is being promoted, many
cases are still seen where progress toward next-generation
updates and the functional support status differ from one
mobile phone company to another. Activities are also
currently under way to launch new fifth-generation mobile
communications systems (5G). Besides sophisticated
communications technologies, mobile communications
technologies consist of enormous volumes of software.
Because connected vehicle systems are designed on the
premise of such mobile communications technologies, a
good understanding of them is indispensable. Accordingly,
software engineers developing code for vehicles in the
years ahead will have to be well-versed in communications
technologies, especially mobile communications.

2.4 Linux/Android-related software engineers
Onboard infotainment systems have continued to
follow their own path of evolution in recent years and are
now required to control over 2,000 menu screens and to
support the operation of an enormous number of functions.
Such products are without parallel even in other industries
and constitute a gigantic mass of software. In recent years,
Linux or Android has come to be used as the software
platform on which onboard infotainment systems are

H ZE ¥ #R No.84 (2019-3) 6

40 years of Automotive Software and New Requirements for Software Engineers at Nissan

74—k LTIk, FE Linux d L < 1d Android 25 &
NBE)olz, 7z, BHEHDEL ED 7 VI OMBTIE
A EIELY—LVELTHEDNL L) IZHRoTBY, 7
ZA—=varyEflAasbET, ELIMHNRL T VHMI
(Human Machine Interface) 253K SN TETW5hH, 2
NHOEREFEHRT 572012, Linux M U8 Android B #E O
Hfia WbV 7 b7 2 VT HRDONT
W5,

2.5 ERETE - BEMEEDY T MU T AM
(R0 H BRI IC . S E I R T
KA —IZHDFAM TH Ho BIEIZHEIRALHEE (AD
T=ANEFONTWEY, BIED AL 7 — 2 OH THIZHE
LUz SNBDH, RS OWERH. &R T
BDo MHIZIIN=RZ, T —TF—= v 7HiisHwv
LENTWh, SHOBEBENTOY 7 27 Ak e LT
& TH =TT IEAN R B L. EREEE. EE R
WM ESSICHB LTV ZENTELY 7Y T T
YUZTHRDOEN TN D,

3. VI b 7HENE LEDSHDERDHHH

HEHBIHECIZ, SNF TIBHi/-mYy 72T
B O RENA LD 72012, W DDk x L T
w5,

1) V7 b7y Y =T ORER
(2) ITR¥ ¥ OEFEDIH
3) MHANDTL Y =ZFD ML == I X BT YT

INLERAELC EBfb. HEhEfR, 322774 F

— IR TE BREN 2 BT R EE 2 D T %,

INDHHHEO=—-XFn L. HEIFE Y A ZADK
BHEIKIET B2, SNEDV 7+ = THe) % s -
PR L THEZ,

&
1)

Z X ™

D) KREW : BEEHIEICN 3 27V _— A%, HE)
i)) 38 i X A AR SCSE . Vol 50, p. 126 (2007).
2) SFTIELAIT A ¢ BLRGHEL A A A AT B 58 O Wi £ IR
EEpIA), EHLE A SRS EMBRIAR S AT A

Vol. 2009-EMB-14, No. 9. pp. 1-12 (2009).

based. In addition, beautiful screens are also being used as
a tool for enhancing a vehicle’s degree of product appeal.
A beautiful-looking and easy-to-operate Human-Machine
Interface (HMI) is demanded for use in combination with
animation software. In order to satisfy these requirements,
software engineers are needed who can skillfully use the
technologies associated with Linux and Android.

2.5 Image/voice recognition-related software
engineers

Image recognition is indispensable to autonomous
driving technology and voice recognition is necessary
for vehicle connectivity. A third-generation artificial
intelligence (AI) boom is said to be under way at present.
Amid this current Al boom, image and voice recognition
technologies in particular have undergone a profound
evolution. Both fields are based on the use of deep
learning technology. Software engineers developing code
for vehicles in the future will need to understand deep
learning technology and be capable of further improving
image and voice recognition technologies.

3. Activities for Enhancing Software Capabilities

At Nissan, we are currently proceeding with several
measures noted below for enhancing our capabilities in the
new software engineering fields described in the preceding
sections.

(1) Recruiting software engineers

(2) Making effective use of the resources of IT vendors

(3) Conducting training to improve the abilities of in-house
engineers

Comprehensive activities are being promoted in
these areas to acquire the capabilities needed for dealing
with electrification, autonomous driving and vehicle
connectivity.

We want to continue to acquire and expand these
software capabilities in order to thoroughly reform our
automotive business and respond to social needs in the
future

4. References

1) A. Ohata: Model-Based Development for Automotive
Control, Proc. of the Japan Joint Automatic Control
Conference, Vol. 50, p. 126 (2007).

2) N. Suzumura et al.: Overview and Trends of European
Automotive Embedded Technology Approach, IPS] SIG
Technical Report, Vol. 2009-EMB-14, No. 9, pp. 1-12
(2009).

7 NISSAN TECHNICAL REVIEW No. 84 (2019-3)

¥%6E Special Feature '

RRRVERTY — L DBF

Development of a Static Code Analysis Tool

BHI A7 i e

Miwako Hasegawa Satoshi Ichikawa

w 7 IRV T M 2T OHEWENTH S, T CTICHA0EITEBL72A, WEZIZHEY 7 b
Y T OB IR L Tnd, $720 REASRERIZ VY ORE FEGN B T RITT AT
ALY 7 MY 2 TIEARBBEICIRAENE L)1k oTWwh, TOL) G, Y 7 b7 27128 5T,
EEELRY T N T RER T A LR EE LT < Th D, BET Y —VIEY — 20— FE2ITT5 2
ET, ABEDOTREMEO D B HEIMIZIFECTE 5720, HEHSHE CIIHEI Y 7 MY = 7 OdE % 1
PRI B2EELFLEEMBED T, Y= VOWERN LEEBOREY 7 M7 2 TANOBH % AT L TIT>TET
Who TITHEL TIRY = VIEROHR THRIB S NMES AN L. Tk e 25 8— N LRSS L 22507
By — W2 DOWTIR <%,

Summary About 40 years have elapsed since software was first installed on vehicles. However, the
size and complexity of onboard software are still increasing. In addition, software is being adopted on a
large scale even in safety critical systems that can have a serious impact on the safety of vehicles when a
problem occurs. Nissan regards static analysis as a very important technology for achieve high-quality
software. The reason is that static analysis tools can automatically identify possible errors in the source
code by analyzing the code. Therefore, Nissan has been improving the performance of such tools and
also applying them to actual mass production software to check the quality of onboard software code.
This article describes the limitations of commercial static analysis tools and presents a tool that Nissan
developed with a partner.

Key words : Computer Application, automotive electronics, embedded software, static analysis,
Al, computer

1. [FUSIC 1. Introduction

Software began to be implemented on vehicles in the
latter half of the 1970s. Assembly languages were initially
used to write the software code, but they were gradually
replaced by the C programing language in the 1990s. With
C used as the programming language, it became possible
to apply static code analysis tools for analyzing the source

970FEMRFIT, V7 b7 2 77 VIR S g
B7ze BNE, T ¥ T IEREFH SN, 19904F
2%z e, RECEHRIZESRRAON TV 72, 71
7T LEHEPCEHIIRDLE, V—AT— Fe HEIMIZ
Hr Ly NEGOWRMED B %5857 % FiE 3 % T —

WRERTEDL L)k b, TR YT TFEIL CPUS
TTEICRRLEEE RS ELEE LV, CEEIL.
%) OFSHCPU I TR T ELL SN TV D05
Tdh Do 1990FMITIE, WO DOEIIIFHT Y — V25T
WMEND L)% oT,

—7 20004 ERFMDIC, HEEEY 7 b7 27 RETK
ERMEICEBET S, HEY 7 by TRl VT b
YL T REN VIO E R AT ALl T
Do EFMALFEE, HEIZY 7 by 2 THEDE L &Y
TIAVIBEL Tz SOV 7 by 7 B REIL,
BEAEDPTTIAVORFELIZY 7 M7 2 T2 A1

code automatically and identifying any places where there
might be errors. Assembly languages invariably differed
for each CPU core, but the C language was standardized
for a fairly large portion of CPU cores, which facilitated
the use of static analysis tools. Several such tools were put
on the market in the 1990s.

At the beginning of the 2000s, Nissan encountered a
huge problem with regard to software quality. That was
because the expanded use of onboard software meant that
software quality had a large impact on determining vehicle
quality. Like other companies in the automotive industry,
Nissan depended on suppliers to develop much of the
company’s onboard software. Nearly all of the software
quality problems concerned the software developed by

* 7 b = 7B Software Engineering Department

H ZE ¥ #R No.84 (2019-3) 8

Development of a Static Code Analysis Tool

HMCTHolze 22T, AWV 7 by o THilrEOF — 4
I2X5 BNEV 7 N 2T OMEEAGE ST 5 2
LERDTe TOHT, YT ITAVDPHELIY —AT—
K25 BEICAR GO RO & % 5 & i3 % 72
O, BT -V EREHT A L E L.

2. ERRVERMTY —IURFEDENRE

Bk oo O . 2000 £ O 12 H I, Wiz HEl - T
VB EOO PRI — VIR AR L2, b
3. B sBlnTHeb N,

* QACIEZ, MISRACHA FIA v ~O#EHF v 7§

5o
e Imagix 4D %, YV — A I — FOfEEPLFIFITH L oM

. s A MEEER YT = v 735,

* Polyspace (£, € 0], BLHIOFIIINT 7 2 A, 4 —/3—
TU—EDT A LT T =% T 5
ZOOPHY —VERT, YHEV T MY 2 7 OMETE

I EAToTW225, Y — VORI ET R EHA

WOWTHEBT 2 L)1k o7z UWFIE, WY —vics

VT FELHIRNE TH 5o

21 R—3EUT~«

AV THTAYAY PV AT AL, BRI 21T 2
W S AT A TH o7z HER, TOY — Lol
VZIETH L 720
e T T ANREEE (F72) WIHOZITE L OMFTHE

TR B Y, GHIT B2 BED Y —2Aa— KT

35054 LT —DIRHTE R,
c—ODDT UV IALLT—HIGNT B L, ZTOYTHN %

FEIELTLE) 20, miishi—oox 7 i

ELFMNT 2 0ER DD AV THTA VALY NI A

T A E AT B IR 2 2 55, =7 — 02T

AT &4) R S 2T UL 5 7w

22 BEEEOHEIAHY T D T 7EEDOREE

WD Y — Vi, % OIZHER 2 F = v 7 HERE % M
A TWAHA, HENERA ORI L Ty, 728 2
2, EARICE BT =D EEE, AT T2y
7y TR 7 5 7 OnOff WEROFEIEI A 70 &, HHK
VI 2 THREORBEA R TE v,

2.3 WMINIBSROVIVFIAFP VAT LA

WHILEL Y 2T K< VF 37 2 AT AT, EHICH)
$ 27 v =2 THOTFT =5 DBEERT Y Fay 7%
SWEBEREEDEAET L, WHY = VIZINSOARESE
I DR 2 T\ v,

9 NISSAN TECHNICAL REVIEW No. 84 (2019-3)

suppliers. Therefore, we decided to launch an activity
conducted by a team of our software engineers for monitoring
outsourced software quality. In this activity, it was decided
to use static code analysis tools to automatically identify
places where there might be errors in the source code
developed by suppliers.

2. Motivation for Developing a Static Code Analysis
Tool

As mentioned above, in the early 2000s Nissan
began using three general-purpose static code analysis
tools that were commonly available on the market. These
tools were used from different perspectives.

¢ QAC was used for checking compliance with the Motor
Industry Software Reliability Association (MISRA) C
guidelines.

* Imagix 4D was used for checking the source code structure,
recursive call function and inter-task shared variables.

* Polyspace was used to detect run-time errors such as
division by zero, access outside the array bounds and
overflow.

Outsourced software was inspected using these
three general-purpose tools, but we came to realize that
the tools had their limitations and that there were points
needing improvement. The details of the principal limitations
of these tools are described below.

2.1 Scalability

It was difficult to conduct a static analysis of
an infotainment system. We encountered the following
limitations of analysis tools.

¢ The ability to analyze the transfer of values extending
across files or functions is limited. Large-scale source
codes exceeding a million lines cannot be analyzed for
run-time errors.

* When a run-time error is detected, the analysis is
suspended at that point. The detected error must be
fixed and that location re-analyzed. It takes several
hours to analyze an infotainment system, and analyses
must be repeated to the same extent as the number of
errors discovered.

2.2 Functions specific to automotive embedded
software

General-purpose tools on the market are equipped
with many standard functions for checking software code,
but they do not provide any functions specifically for
vehicles. For example, they cannot detect problems specific
to onboard software such as operational errors due to the
overwriting of data caused by an interrupt, sleep/wakeup
processes and flag On/Off handling.

2.3 Concurrent processing and multi-core systems
Concurrent processing systems and multi-core
systems experience problems such as those caused by
data inconsistency and deadlocks between software
programs running concurrently. General-purpose analysis

FRRVERATY —)L DRIFE

24 1—YEUFT«

AT Y — Vd, BT DO A = AL b, V=A% 147
BHLIZZTTH, VAR EHETF v 7 LT, [B#E
WEET LM OH 21728 5. Lz > T, TV
VT R SNTABREDOWREDOH BT EFEL
Ca—L%a{TiEnbkv, LA2L, }Ei%a):—x“t LT
X, GRIOEETREDODH HITOADLE2—|ZE LD
W GELRBLEBIZLE 2 =217 720121, %kﬁiﬂt
WP EDNSTH D, N—T 3 VENL, WA > 727
v—vay(a>f®%%Lm%%@Vﬁ—bmﬁ%ﬂ%

(29 % LR — DS HTREEEIE. v BT <08 W] RE

B E RIET, Fﬁﬁ&/—w (. AT RE S TR A S
NTwiwn, LEdoze LTOESMHEL S

I— FEGFDOAKRT, YA FAL 287 FFTHMTE TV
(A

Vb &) EE XK T 5720, HEIZ/ S— bt
[Ty 3 L WY — VORISR BIIE L 7o 41k
@ —)V %, Embedded Software Code Analysis Tool ®
B CESCAT EMERT &2 L7,

3. Y—IUBEFE

HEZY 7IA4 V200 L TS Y7 by 2T AEE

N L. BB S A ESRIBICRNTH LA EE
ERE L. LT, %O)T/\D% ﬁxﬂjt AEA L
UV 7 by 7GR Y — A 0 — Ntk 2 filiH 3 2 6
ESCATIZ## L 720

RETIE, WL ODDEEIN-HEREIC
AT %o

D

DONWTE LD,

31 Ay—3EUT«
ESCATOATr =) 7 4 2T 572012, LLTO

TFHEERHL. HEHITOY—A2a— 2@+ s2 %

THEIZ L7z,

e N—F A4 aZ sy TNVI) AL ETRNAEZ LT, K
HE R Y AT L%, WODRDOHT I AT A5 ET 5
CENTED, ML, BEESNYTIAT LD
BHESIBRBL, Y7V AT LTIt 25E T T
o ZLTC YTV AT LD RERET LI LT,
KT 2 AT LA &R OFNTER RS 5 2
ENTEL, D

o L — WX BB DR AR ETRRIZT S L
Ty VAT LOMEHEE A D i 7 AT RS B % 8 4R
T&b, ZNIZED, VY=V —HiddH b L XNVOK
R T 2RI S, IDHBEORI MR S AT A
EHMTE b,

tools are not equipped with a function for detecting such
problems.

2.4 Usability

Because of the analysis mechanism used, static
analysis tools re-check an entire source code even for
revision of just one line and indicate lines where a problem
might occur. Consequently, engineers must review again
any lines indicated as having a potential problem. However,
the actual need in the workplace is to limit the review only
to the lines that might be affected by that revision. The
reason is that an enormous number of man-hours are
needed to conduct an actual review. Functionality for
analyzing differences between reports, making it possible
to compare reports before and after the addition of a
function owing to a difference in software versions or
continuous integration (CI), has an effect on ease of use
and applicability. Tools on the market do not provide a
function for analyzing such differences, and even if they
do, the extraction of differences is limited only to code
differences. The tools cannot analyze side effects.

In order to address the foregoing problems, we
initiated development of a new static code analysis tool
together with a partner. The resultant tool is called the
embedded software code analysis tool (ESCAT).

3. ESCAT Development

We analyzed the defects stemming from the software
received from suppliers and identified defects that could
be effectively detected by static analysis. Those defects
were generalized and ESCAT was equipped with functions
for detecting the same software structures and source code
descriptions as those of the identified defects. This section
describes several of the functions incorporated in ESCAT.

3.1 Scalability

The following methods were adopted to ensure the
scalability of ESCAT, enabling the tool to analyze source
code consisting of several million lines.

e A partitioning algorithm is used to divide a large-scale
system into several subsystems. This reduces the
complexity of the divided subsystems, enabling an
analysis to be completed for each one. The analysis
results for the subsystems are then integrated to obtain
the analysis results for the overall large-scale, complex
system.”

¢ Analysis accuracy can be defined and modified by the
user, making it possible to select the optimum analysis
accuracy matching the level of system complexity. This
enables ESCAT users to analyze larger scale and more
complex systems without causing accuracy to decline to
a certain level.

3.2 Functions specific to vehicles

Functions specifically for automotive embedded
software were developed as key capabilities of ESCAT,

H ZE ¥ #R No.84 (2019-3) 10

Development of a Static Code Analysis Tool

3.2 BEIERFEOKEE

ESCAT OHEELEREL 20 5, HEHHMIAAY 7 b7 x
THAEORELZME L, iy 7 by o 7 OMEOMKT %
TREIZ L7,

321 7520n/Off LIg™

HEY 7 M7 2 VIR S WS, HAA Y AT AT,
WH) =A% BT LB VY — A —BNICEAT
BLI2ODT T THHEIMH SN L, Lo L, PR EO
72, V=A% ER LT EMETICEER TS
r—2ZLRENL BIIA Y TATFA VAV NV ATFLAD
IIOBRERLZY 7 27T, T 757Dy k
(On), Uty b (Off) OXRTHELLEFIENTES T,
KEmBEREE %5,

COREIX, VA= R LHEHBINICT I 7 ERIEE
L. HODPLOERININV—IVEYIZT I 7L N
TV EF v 7 Th, FIZIE VY —ALEERT T
TN ONT, WL LIEDO/NZA 2@ 72 ETH,
v b&tvy b (On 0ff) OXRTERILT LT &%
Frv I3 h,

322 RU—=T /91 A 0T wT"9

BEk DN EZEDIEE T 57 Vv~ Tld, Ny T L
MY EHIET A0, F—F TREOBE Y 27 L DOWEE
eIz DbLENSH L, L, A7) b
F—D LI, BEHOBELZBHRMT 5720, F—F 78
SENEDUE R Y AT ADH b, TNHDY AT A TIEH
BERNEMMAD20O, XATVDA) =T, Y24 7T
TR TN S, ZOFIEIZ. 4 T HAEDO N F
T ITICKoTEBRENSE, A)V—T /"2 A4 2T v 7T
FEET LML, NP7 TOREE Y7 My T Ok
EOTREETHL, N—FT7THRAY) —TIREIZH L
. VIR a7 A Ty T FERE A HE T
TELoRwL, N=F72T7HW 7477 v TIREIZH
LERIE, VT N2 TIEAY) = T ERARE TR T
75750, LAL, N—FK&EV T FOIRERELS)R S
L, AN=TFL7FFE, bLE VAT v T L
FLVWIAREAIIES,

N—=FY7 27 OIREIIL VAT TRESN, VI by
TOREIIER TRESINL, 22T, ZolEIE. oh
SOHPAOH TELE SN/ T XTOL T AY LB H %) A
N7y 7L, @FOR THRHSINAEAESE LKR—MT
Bo 700 INSLDLYAY ZEEER BEED, EAALD
SR |- OIRBEIZ DWW T b, R A RS 5,

323 F—IHE?

COREIE, B A EREMO S AT, F AT
WZRLT7 72 A LS AEDT— 7 BaIREL i+ 5, 5
YT by TS E, WEEEBD Y A 7125500, Y
BRGSOV AT AEGIET 5, H1OY 7 La—F1
TlE, RBEREEDY X7 1 L @EBIEESY A7 23FEE S,

11 NISSAN TECHNICAL REVIEW No. 84 (2019-3)

making it possible to detect problems in onboard software.
3.2.1 Flag On/Off handling®

When embedded systems use shared resources,
flags are frequently employed to indicate that a resource
is temporarily occupied, although this is not limited to
onboard software. However, cases are also seen where
processing is concluded without releasing an occupied
resource owing to a design defect. This becomes a large
quality issue especially for mammoth software code like
that of infotainment systems if the operations of setting
(On) and resetting (Off) a pair of flags are not correctly
designed.

This function checks whether flags are
automatically identified by the source code and used in
accordance with predefined rules. For example, for flags
showing the occupied status of resources, it checks whether
the setting and resetting (On/Off) of a pair of flags are
validly done regardless of what processing path is followed.
3.2.2 Sleep/wakeup?V?

Power consumption by onboard systems of vehicles
powered by a conventional internal combustion engine must
be minimized as much as possible while the ignition key
is off to avoid causing a dead battery. However, there are
onboard systems like the Intelligent Key entry system that
must operate upon detecting the approach of the driver
even when the ignition key is turned off.

To suppress consumption of electricity by such
systems, the vehicle microcomputer performs sleep/wakeup
control over them. This control is executed by hardware
incorporated in the microcomputer. One problem that occurs
concerning sleep/wakeup processes is an inconsistency
between the hardware and software states. The software
must be able to issue a wakeup command when the hardware
is in the sleep state and a sleep command when the hardware
is in the wakeup state. However, when a mismatch occurs
between the hardware and software states, it leads to a
defect where the hardware continues to remain in either
the sleep or wakeup mode.

The hardware state is represented by a register
and that of the software is represented by a variable. This
function lists all the registers and variables changed within
the range of these states and reports any inconsistencies
detected within the range. It also provides information on

whether interrupts are enabled or disabled when the data
R R S e e e e e e e e e e e

1. int shv;

2. void Task1() //Low Priority

3.

4 int a, b = 10;

5. shv =b; /* access1 — write access */
6. a =shv; /* access3 — read access */
7. %

8. void Task20 //High Priority

9. {

10. shv = 20; /* access2 — write access */
11. }

K-1 27)L2—K1
Fig.1 Sample code 1

FRRVERATY —)L DRIFE

B Y A7 FEATHICEBIRE S A7 ~OY)) #z 73
BET Do SATHZFET LRI) B A15E L HE.
5 A7 1 CETLEEBshv~Df AL, FA2721250
FFEEEIN, FRAZ2HTRICY A7 125617 H 2 5 HHH
ENs e, L#EEINAHEYRMEOshy Gt T2 &
(7% %o ESCATIZZ D X) eIk L, L&X
% LA — b1 5,
324 v ROvIDEH

ZORREEIX. VAT —=FAIL, Ty Fuy 7 E#RIT
WREME DB D E s L2 &) a5, 7y Fay
JERRITITI AL ZLORRTRINES, M20
P TNT—F2TIE, A7 1% 27 250 U4 shy
T 7R ALTWD BRshvIZHERIIT 72 AT 5729
OPHBHIE L LT, ¥ A7 Lidk~v 7+ RlIEZT Y 73 5,
7 227 20 FERICHHI 2L E T, S TV 2 TIRE L
Y74 RIEZAY I LTCWAIENbI L, &, ¥ A1
METHZFAT L 7218128 27 2 DY)) B2 358k L7z
TFVFEREZCTHADL, WHITI0THIZEBY, ¥ A7 20
RlZuov 27 LEHE9d5, 2O T7HIZTTICY ALY]
LYoy 7z s8hTwid, LA ->T, A7 21351k
BEZRD, YA 174+ RIZ))—AT 5T L5
Do =N Y AZLE, ETEHETLO. Y AT20
WP T 2 F o T b MTDOY AT DREFLIREIZA ST
LI, YATAENYTIRE 7y Fay Z7I2E
o ZHUIXFL, ESCATIE. Y AT ANT vy Fav 7ik
BIZAZ RO S 2 HAT 2 AL LR — M3 5,
ESCAT!Z, #E Mt & 8 & L <TRTOS (Real Time
Operating System) Z &2 252 A7 L3 —)V % Bk
TEBIED, EAAIN —F > L OHHEHIELC DT b EA
AEEN WS BT A ENTTE, OSRV S O
RIS A REL R TE 2, 512, v
FHAG AV a—) P CMEERDLTIAF) T4
=) Y IO RIEHETDH Do

33 WMINIBETILFOAF VAT L

TNFY AR NVF AT e, WHIEEIT) VAT
AT, FIIEIZBWCTT Y Foy 7 R aiRER &,
TUT T IV T TORBEEEEESER TV, —FT, 2
NoEPRI o726, BEOREKT A ML AT AT A
T, FELEIZAE) ARG Z M 5 2 & IZIERICHEET
Hhbo BROI AT DREFTEINLEEIZ, FATHNTAN
VIMBET LA IV TR REBD T — AN LHh 5
THbo

TR ZREERRITANRY VELARZYFET S Z LT
TX/ELTH, ZOBHTEDY A7 NEDT— FaE
TFLTVDEREV) ATV a—) »7d, §XCEHLE
Nz, TXTOANY VEIARY £ I 7 h gL
1T AN —A%ED 2 L IZHEMIIARTRETH 5o

in the registers are rewritten.
3.2.3 Data race®

This function detects a race condition in cases
where two tasks having different orders of priority access
a shared memory. Many onboard software programs
divide a process into several tasks and control a system
while switching among the tasks. In Fig. 1, sample code 1
implements a low priority task 1 and a high priority task 2.
A switch to the high priority task occurs while executing
the low priority task. If a switch occurs after processing
the 5% line, substitution of the variable shv being executed
in task 1 is overwritten by task 2, and after the completion
of task 2, execution of task 1 is resumed from the 6" line.
Consequently, an inappropriate value of the overwritten
shv is read out. ESCAT detects such race condition and
reports the places that are overwritten.

3.2.4 Deadlock detection

This function detects whether there are places in
the source code that might cause deadlocks. A scenario
causing a deadlock can occur in many different situations.
In sample code 2 in Fig. 2, both task 1 and task 2 access
the same shv variable. As an exclusion control to ensure
safe access to the shv variable, task 1 locks semaphore R1.
Similarly, task 2 also requires exclusion control. It is
seen in sample code 2 that task 2 also locks the same
semaphore R1. Here we will consider a scenario where a
switch is made to task 2 after task 1 has been executed to
the 5" line. The process proceeds to the 10" line and task 2
attempts to lock R1, but this semaphore is already locked
by task 1. Consequently, task 2 enters the wait state and
waits for task 1 to release R1. Meanwhile, task 1 is waiting
for task 2 to be completed before it can resume execution.
Because both tasks enter the wait state, the system reaches
a hang state or a deadlock. To deal with such situations,
ESCAT detects and reports places where the system might
become deadlocked.

ESCAT can generically detect race condition
without depending on the OS or the microcomputer. As an
exclusion control, it allows a different system call to be
registered for each real-time operating system (RTOS). In
addition, it also allows interrupt disable/enable commands
to be registered as an exclusion control for interrupt
routines. Moreover, it can also handle priority ceiling

R S A ey

int R1,shv;
void Task1() //Low Priority Task
{
lock(R1);
shv = 10; //Task2 pre-empts Task1 here
release(R1);
}
void Task2() //High Priority Task
9. {
10. lock(R1); //Deadlock instance as R1 is already locked by Task1
11. shv = 20;
12. release(R1);
13. }

P NS e LD

®-2 vr7)Lad—kr2
Fig.2 Sample code 2

H ZE ¥ #R No.84 (2019-3) 12

Development of a Static Code Analysis Tool

ZZT. ThHoRLEIGER T 2 A B &% T %
72, WO T FEARe Ty Fay 2 e E . <L
FAT VAT ATHHIETE S L)L, ESCATIZHA
RATES

34 1—YEUFT«

341 LiR— bEDER
KHBEY 7 vy 27 ¥ AT DR L, BT 2179

L BERKEOT -y b EN S, LT, I

DI ==Y TEV 7 My o TARER R E Y IR

TLEa2—% LR TInebhwv, LEz—d, T

M2 BIEETHY ., T2, VAT LAZECHBLTY

BVENH L0, FRTELLY YT L ESNLY

BN\, TDRDY T NI 2T RRHETLTF -4k o

T EFITTREEMEETH D, INHEDT == T D

—#ix, V7 MEEZfTL AL TCHRVWIOLH D, Bk

MEMFEN S, éﬁ%ﬁ%ﬂﬁ“’“éﬁ“éfim IvsrnArH 5, 72

&R A ATIRINRME B O, 75 LY VIS

WAL 2 b TV nizd _\E%ﬁﬁfiﬁbﬁ&w

FHBATIRIMME 7. Z L CEFOMAGHLEE T Ea—
Fi3RINELEEZ DL, WL T — ZEERHEC

B0 2 B FENT RN OBRFL 72 EDSFRRAI DR & 72 5 o
—Ji. AEAGRES, BEREETY 7 My 2 TIEHE

ENb, TOLE, T A ERT L7010 WES

NTWHRVWY 7 r 72 7OG L&D, V7 My 74k

ot QAT BRI 2 T B L EDH Lo T OIH

. WE SN TR WG ICHTET A BRI 590 T

ERNT L&, IELWERDPIEO N Wb Th D, —h

T, I— FOUENEEZ 52 2 WE5IcowTliE, 3T
WCEM LT == 7T 5L E2—#ERPERTH

Do MIROPLH Y — IV TlE, 32— NI BB &

ELT, BEPLWEGOT —= 0 7 & RET HH%EED T

TR R0l F2 Ty A IZESCAT T, Z0kEfE%

BI%E L 720
COERIX, BAEDON—Y 3 VIR LTI ZEHO

WO 2 ET L TEHL TS, BiO/N—Ya v

MO ORI N Wi TR S AL R &

5%,

3.4.2 ¥¢¥?®UE:—®@%

HRIEAT Y —VidlE . REOABEEOT—=v 7%
BESHEL, TLT, INHIETFFETLE2—%2 T A4
B b, D0, mEIERERANEKT L, ZOME
WXL 272012, FA I OO LWFiEZ L
770 LFICZo061%%0T 5,

R AV IR (B - IWAE 2 (MR
Db, FOT =V FORREES T b T— FHHE
UBBRZTISER L TWaa, ThonT—=r7
2T N—TILL, TV —TO—DDREFNOVWTTE

13 NISSAN TECHNICAL REVIEW No. 84 (2019-3)

protocols that are an issue in multi-task scheduling.

3.3 Concurrent processing and multicore systems

Programming defects like deadlocks and race
condition are apt to occur in synchronous processes in
multitasking or multicore systems that execute concurrent
processing. Yet when such defects are present, it is
extremely difficult to detect their occurrence in synchronous
processing either by unit testing or system testing. That
is because there is an enormous number of cases concerning
the timing for the occurrence of an event in a task when
multiple tasks are being executed.

Even if an event or an interrupt that causes a
problem can be identified, it is impossible to define the
overall scheduling so as to know what task is executing
what code at that time. Therefore, in practical terms, it is
impossible to create test cases that would cover the timing
of all events and interrupts.

Functions for detecting the data races and
deadlocks described above have therefore been incorporated
in ESCAT to detect problems occurring in synchronous
processing in order to be able to deal with multicore
systems.

3.4 Usability
3.4.1 Differential analysis report

When a static analysis is performed on a large-
scale software system, a large number of warnings are
usually detected. Such warnings must be reviewed manually
on the basis of the software specifications and design
documents. A review requires a lot of manpower and time,
and there are many times when only specific engineers are
capable of doing the work because it requires a thorough
understanding of the system involved. For these reasons,
reviews are an extremely troublesome activity for a software
development team. Some of the warnings do not require
revision of the software code and are referred to as false
positives. There are many reasons why false positives occur.
For example, one cause of a false positive is that the
computer judges that the values of external inputs and
signals or combinations of those values can occur, even
though in the real world they are impossible. The reason for
that is the computer has not been given any information
regarding the values or the ranges of external inputs and
signals. The limitations of static analysis tools regarding
complex data structures and operations can be cited as
another cause of false positives.

Meanwhile, the software may be modified due to
requests for changes or to incorporate measures against
defects. At such times, it is necessary to conduct a static
analysis again of the entire software code, including parts
that were not changed. The reason is that correct results
cannot be obtained without analyzing places in the
unchanged code that might be affected by the modifications.
The results of the review already conducted for the previously
detected warnings are effective for the places unaffected by
the changes. General-purpose tools on the market have not

FRRVERATY —)L DRIFE

¥THOWMLES, ZORREEZDOINV—TDETDT —
ZUTICHATEL L)L,

o L P a—ZBELEROEM L a—TA L a—%
TR, T —RFTICEL/NARLEM, BT 57 —%
DIERR EDVVEN b 720 TT—OFFHIZL YL
FERERIER R L, 57—V Y o — |ZELREH
* HEIICENIRA T 2 REA EH L, L 2—T O
I D5 TR R S 72,12

4. B R

41 e
P3ix, ESCATIZHEK L7HRED T L O TH %, FRIEE
2 BHREAT R b fro0 % B BB 2 923 L 7o)

42 EBE

K41k, =20V 7 b7z 7 ORI 2272 5 R 0
SR CTH Do ESCATIE. AHITOV 7 b7 =27 %%
1H TS 50 155170 2 — FOMBATF THEO I Y —
WEET D&, #4914 ORE CTHRITATE S,

o0 WHY —vida— FHEBDSK & < 7 B & il
FEDMET LILFER BRI C O AT E % L % 55,
ESCAT B AT L NIV O KRB T — T H BT 251 5E
ThHbo

T I T e e e g

Number of

Detailed feature list
features

Feature category

+ Zero division

+ Array index out of bounds

+ Overflow/Underflow

+ Illegal dereference of pointer
+ String buffer overflow

+ Uninitialized variable

+ Infinite loop

+ Unreachable code

Runtime error 8

+ Recursive function

Function call check 2 :
+ Reentrant function

+ Unused Assignment

+ Read-only/Set-only/Unused variable
+ Stale value usage

+ Group variable

+ Access inconsistency

+ DFD reverse

+ Flag handling

+ Mismatched semaphore pair
+ Module distance

+ Inhibit system call in ISR

+ Maximum stack size

+ Maximum steps

Variable read/write check 6

Protocol check 4

Worst-case analysis 2

+ Shared variable

+ Shared semaphore

+ Semaphore locking period

+ Semaphore deadlock

+ Semaphore during tasklock period
- State machine livelock

+ Sleep/Wakeup
+ CC parameter

Race condition 6

Automotive specific function 2

Differential report 1
Total 31

X-3 ESCAT [CE&EUckEEE
Fig.3 Features implemented in ESCAT

been sufficiently capable of identifying the range of influence
of code changes and removing warnings in unaffected places.
For that reason, such a function was developed for ESCAT.
This function is accomplished by analyzing the influence
of changes made in comparison with the present version
of the code. It removes false positives detected in places
unaffected by the changes made to the previous version.
3.4.2 Assistance for manual reviews

Static analysis tools usually generate large
numbers of warnings of defects, which have to be reviewed
manually. That work increases the cost of confirming
software quality. We have developed several new methods
of dealing with this issue. Two examples of them are
explained below.
¢ Grouping of warnings: Among the many warnings
detected, the codes causing some of them can be
attributed to the same functions or variables. In those
cases, such warnings are grouped and a representative
example of the group is analyzed. The result can then
be applied to all of the warnings in that group.?
Provision of information needed for a review: In order
for a reviewer to conduct a review, it is necessary to have
information on the conditions and path leading to the
error location and the related data. The necessary
information differs depending on the type of error
involved. ESCAT is equipped with a function for
automatically aggregating and providing the information
necessary for reviewing each error. This function
reduces the man-hours needed by a reviewer to gather
the necessary information.'?

4. Results

4.1 Functions

Figure 3 summarizes the functions implemented in
ESCAT. It features 31 functions, including standard static
analysis capabilities. V1V

4.2 Performance

Figure 4 shows the measured results for the time
needed to conduct a static analysis of one software code.
ESCAT analyzed a software code consisting of one million
lines in approximately one day. It can analyze a 150,000-line

COOOCOOOOPOTCOOVOOPOOOOFOTGOOOOCOCOOOOO

18

16 X

14 -

12 , Commerciall tool A
10 /

g Ly

Analysis time [h]

ESCAT

SEICIFNICN
X
4
W
L4

0 100 200 300 400
Code size [KLOC]

X-4 fEERE
Fig.4 Analysis speed

H ZE ¥ #R No.84 (2019-3) 14

Development of a Static Code Analysis Tool

5. ¥ R

HIEEESS I A7 74 FA—7%2 8, ZLV=IROos
BREIZE T ETIARL TV D, FFC, HEV 7 h o7
OHBE, FHS LN LN ->THEY, V7 by 7ICRRE
FTOLAREAEDWINLCWd, MAT, ¥ VvFa7, A
IN=NAH, L B, N—=FT 2T EV T Mo
TIWEEST A) R— g, BhsipE5| X2 L
TWab,

VI M 2T OREEETE SR olZiE, Bifk
T A M Th CEN GBI SATT R TH B0, Vv — A
O— FOHBEBHEEDOWERIZE), FEETY —Ra—
FaFzy 735 LIFATRIIZo TS, V—AT—
R & MRFES 5 720 OF BN Y — LV ORE. KO HERED
W LUBIATRTH L, SR REIIFNT Y — VI,
ZOMOFEMHER O TR EMAE DL THETT S 2 & T,
MWAEEFEED) A7 2 KIBICHA EEH I DTS
5o

o
1)

ZE X ™

D EWINFEMT V7 by o 7HRERE, V7 by 27
W& V7 b2 TRETO T T A KFE
60370347 (2016.11.11).

2) ERNEMT Ty EHFiRhEEE, 7558
FiRIVRAE i, 7= BHiRhRE 70 7 J A,
HERFEE 596722575 (2016.07.15).

3) BHNFEMT PebsEmds i, Prb i)y
Wy R R A T a7 T AL KRR 855979250 5
(2016.08.05).

4) W V7 by 2 THRERE, VT by o TR
P V7 Ny TR TO ST AL FERFEE 60041105
(2016.09.16).

5 W& : 7777 e ARBAMERE, 77770
Y ARBEWRETE 777 T 7 e AREAEMAE T
077 A, KRS 59627795 (2016.07.08).

6) TR EBEKT 7 e A-EUREEE, EHT 7t
A—F WA TTE BT 7 A—-BmE7a s
7 4. FERFEE 60157787 (2016.10.07).

7) K. Shrawan: System and method for analysis of a large
code base using partitioning. U.S. Patent 8, 612, 941
(20131217).

8) M. B. Tukaram et al: System and method to provide
grouping of warnings generated during static analysis.
US. Patent 9, 384, 017 (2016.07.5).

9) M. B. Tukaram et al: Method and system for verifying
sleep wakeup protocol by computing state transition
paths. US. Patent 9, 141, 511 (2015.09.22).

15 NISSAN TECHNICAL REVIEW No. 84 (2019-3)

code in about one-fourth the time needed by a general-
purpose tool on the market. In addition, the analysis speed
of the general-purpose tool declined as the scale of the code
increased, making it impossible to complete an analysis
within a realistic amount of time. ESCAT is capable of
analyzing even large-scale codes on the order of one million
lines.

5. Conclusion

The functionality required of vehicles is
increasingly expanding as typified by autonomous driving
and vehicle connectivity. At the same time, the scale and
complexity of onboard software are growing rapidly, and
troubles originating in software code are also increasing.
In addition, innovations in hardware and software, such as
multicore systems, hypervisor and distributed processing,
are giving rise to new problems.

In order to prevent software defects from leaving
the factory, static analysis is indispensable, in addition to
dynamic testing. The increasing scale and complexity
of source code have made it impossible to check the
code manually. Further improvement of the functions and
performance of static analysis tools is essential for the
validation of source code. The use of advanced static analysis
tools in combination with other quality assurance measures
can markedly reduce the risk of problems occurring in real-
world vehicle use.

6. References

1) M. Hasegawa: Software inspection system, software
inspection method, and software inspection program.
Japan Patent 6037034 (2016.11.11).

2) M. Hasegawa: Inspection system of missing data
update, inspection method of missing data update, and
inspection program of missing data update. Japan
Patent 5967225 (2016.07.15).

3) M. Hasegawa: Inspection system of exclusion control,
inspection method of exclusion control, and inspection
program of exclusion control. Japan Patent 5979250
(2016.08.05).

4) S. Ichikawa: Software inspection system, software
inspection method, and software inspection program.
Japan Patent 6004110 (2016.09.16).

5) S. Ichikawa: Inspection system of flag access defect,
inspection method of flag access defect, and inspection
program of flag access defect. Japan Patent 5962779
(2016.07.08).

6) S. Ichikawa: Inspection system of variable access
inconsistency, inspection method of variable access
inconsistency, and inspection program of variable access
inconsistency. Japan Patent 6015778 (2016.10.07).

7) K. Shrawan: System and method for analysis of a large
code base using partitioning. U.S. Patent 8, 612, 941
(2013.12.17).

8) M. B. Tukaram et al.: System and method to provide
grouping of warnings generated during static analysis.
U.S. Patent 9, 384, 017 (2016.07.5).

FRRVERATY —)L DRFE

10)

11)

12)

R.Venkatesh et al.: Resolving non progression of
state machines. India Patent 1236/MUM /2013
(2013.03.28).

M. Ravi et al.: System and method for identifying
source of run-time execution failure. U.S. Patent
Application No. 14/037, 758.

M. B. Tukaram: System and method to facilitate a
user interface enabled review of static analysis
warnings. US. Patent 9, 201, 765 (2015.12.01).

BRI FENF

Miwako Hasegawa

9) M. B. Tukaram et al.: Method and system for verifying
sleep wakeup protocol by computing state transition
paths. U.S. Patent 9, 141, 511 (2015.09.22).

10) R.Venkatesh et al.: Resolving non progression of state
machines. India Patent 1236/MUM /2013 (2013.03.28).

11) M. Ravi et al.: System and method for identifying
source of run-time execution failure. U.S. Patent
Application No. 14/037, 758.

12) M. B. Tukaram: System and method to facilitate a user
interface enabled review of static analysis warnings.
U.S. Patent 9, 201, 765 (2015.12.01).

oI =
Satoshi Ichikawa

B E # #R No.84 (2019-3) 16

¥%6E Special Feature '

Hb—ERIBA7—FTI9F v ETILIDIHA

Service-oriented Architecture and its Application to Vehicles

oL o
Toshiyuki Watanabe

w = PRI T — %7 7 F ik, 20004RF1F 10, ITERTHER SND L9127 o 72 KB
VI NI T VAT LAOBETFETH L, I, 7947 M —NEFNVTarEa—F Ry NT—2 %
RS LIS, ARITHELEINTV S, —F, HEHEMITOEFHE S A7 213, CNFEFTLEEL
DY AT LNTHIEZ S S5 2 D% . BEHNLAN (Local Area Network) THEINLTF—F1L, 7
WY DREZRTTF— Y OB ETH), F—E AL WIHIMAITEASINTI Aol LAL, 7Y
WA TR—= R =N ENLZIAR I TA P —DYATLIIBWTIE, EHOZE T AT LAYy — A%
BT B L VWIS —EREAT —FF 7 F ¥ E OB R . T2 TIE, I8 774 FH =12 — Y R3E
M7 =377 FxEEHALIZGEEDr =A% 74 O—BlIZDO VTR 5,

Summary Service-oriented architecture is a large-scale software development method that
attracted attention in the IT industry in the 2000s. Service-oriented architecture is especially effective
for developing a computer network system using a client-server model. In contrast, automotive
embedded systems have mainly been completed within each system, and data exchanged in a vehicle
network have principally concerned the vehicle status. So the idea of service was not considered.
However, for a connected vehicle system, offboard servers are connected to communicate with the
onboard vehicle system. Therefore, service-oriented architecture is well-suited to a connected vehicle
system. This article describes an example of the application of service-oriented architecture to a
connected vehicle system.

Key words : Computer Application, automotive electronics, connected car, service-oriented
architecture, computer

1.1 U & [1. Introduction

Service-oriented architecture (SOA) P refers to the
concept of implementing a software program for each
service involved and combining them to create a large
system. This approach to the development of large-scale
software systems attracted attention in the IT industry
in the first half of the 2000s. In contrast, automotive
embedded software has not been developed heretofore

=V ARHT—F727F v (SOA) &iF, “H—r A"
EWIHHMNTY T b7 HEEL, IR lAaGbET
VAT LEVEN) EIF TR E VI EBER T TH L, H—EA
/M7 —F 7 7 F v ik, 20004FERFEICIT R TER S
NBEImol2 KB 7 v 27 ¥ AT A ORBETE

THoHY, —h, HV T by T7d, h—FEr—3
P EERRE, VR MHT AN AR EREEHRL T
BZELTETBLT, Z0d, HEEA— b “—
ER" L TWEEVWIEZFTY 7 by 2T %2ES
CERHERoT. Ll IR T A4 B —IZBWTIE,
=AM T —F T/ F v ERLER Y 7 by 2T
Mg HETAET. AV Y — T2 — ALEH#ALL, %)
EHTEMED Y AT AP TEL L) IR D, 2
T, AE, BFEOHEKY 7 by o TICH—ERAIRAT7 —*
FUF Y RBA LA, EDX) REEIR LR
L7z

with vehicle customers directly in mind, except for car
navigation systems, among others. Accordingly, vehicle
manufacturers have not developed onboard software from
the perspective of being service providers. However, with
regard to connected vehicles, the creation of onboard
software structures based on an awareness of SOA results
in a standardized interface, enabling high-quality
systems to be provided efficiently.

In this study, we examined how existing onboard
software might be influenced by introducing the concept of
SOA.

* 7 b = 7B Software Engineering Department

17 NISSAN TECHNICAL REVIEW No. 84 (2019-3)

Y—EREQ7—FFI7F v ETILIDILH

2. JIRICBIFD “I—ER”

PF—ERBHT —F T F ¥ Tk, TT -2 %
EFRLBLTELEOLZ VY IR T T4 RA—I2BIT 5 —
CAELTIE, —FlE LTUTOLIRT—EANEZS
ns Eo
1) F7EBET3
(2) B E TITo T NE VI I A T DERIZT 22

<. HEhERT 2

V7 b7 ELTE, RV A AP RLRDLN, S A
FlZEoTE, “FTEBITA" 2k "HEEERT ST
kb, FNENF VY RIIHT2H, CDEIHIT, HAS
DT IVRICERT DIEEZEHLC "R LT
EFLTo PTIE, Z2o0—H6ITHh 5,

3. BELEINcAVI—T1—ADEA

-V 2R T —F 77 F ¥ Tk, EiEfbIhiz g v
5 =7 2 — ADEANEETH S, M1IEELI NS
VE—T7 21— AD—FERT,

4R T T4 RH—Tld, BATTERDIEETE LT,
WS OPDTINAANEZ LD, HERD "BHHEOA A v
FEAE ICEBERBEERIT L, EHERS ST R
I UMb DEREE, FARL—F I X HERIEE
BENEZLND, T L, BREZITTH—E A0
B2AT) NG SR vy — T2 — A" BIMEL
BHALENS A v — T2 — R EHWTEREEST S
ZERROD,

I E AT, BEEROERDSHEEICRE S NS
CEHMEL, BREMEZRET S T AT OEA
WFN b EZ OIS,

4. FTR—REREHET—ER

A7 T4 K==L ADHPIZIE, /=%y b
ol & TR - FiERE A < R 5 —
AR H D, TNHDOHF—VY A2, F—ERERT—FF
7 F xR LA OWEEZK21R T,

COVOCOOVOOOOOOOVOOOOOOOFOGOOOOGOOOOOOO

-1 U—ERD=EH
Table 1 Examples of services

F—EZANE Service contents
1 N7 BT D Open the trunk
2 | ZvTEETTS Turn on the lights
3 | VAN EEMESED Activate the wipers
4 | BEHEITD Open the window
5 | ENZGHT IED 2 | Cool down/Warm up the cabin
6 | A—rEBELT Beep the horn
7| v— hERET Recline the seat

2. Provision of Service in Vehicles

In considering SOA, it was first necessary to define
service. The following are examples of conceivable
services that might be provided in connected vehicles
(Table 1).

(1) Opening the door
(2) Autonomous driving in response to a customer’s request
to be taken to a certain destination

From the customer’s standpoint, both opening the
door and autonomous driving correspond to services,
though the size of the software involved would differ
considerably. Accordingly, service was defined in general
as an action that a customer requests a vehicle to perform.
Examples of this are described below.

3. Implementation of a Standardized Interface

Implementation of a standardized interface is a
key element of SOA. Figure 1 shows an example of a
standardized interface.

Several devices can be considered for generating a
customer’s requests in a connected vehicle. These include
requests made by operating conventional onboard switches,
requests made via a mobile phone or a voice recognition
engine, and requests made through an offboard operator,
among other ways. A standardized interface is provided for
receiving and processing such requests, and customers are
asked to make requests through the standardized interface.
In order to process service requests, it is assumed that a
“decider” will have to be provided to determine the order
of priority in cases where multiple requests are issued
simultaneously.

4. Services for Providing Offboard Information

Provision of offboard information to customers
such as information from the Internet is one of the
services available in connected vehicles. Figure 2 shows
an example of the configuration created when SOA is
applied to such services.

Services are already being provided that deliver

T I T R I L g

Standardized interface

Phone apps 1"

Auto drive Driving control ECUs

Decider |—>| Driver |

Door lock Door lock

Decider |—’| Driver |

Headlamps Headlamps

Voice recognition Decider |—’| Driver I
HVAC HVAC

Decider I——l Driver |

Parking brake Parking brake

Anti-theft system

Decider |——| Driver |

-1 FEEbEENeA V5 —T 1 —AD—f
Fig.1 An example of a standardized interface

H ZE ¥ #R No.84 (2019-3) 18

Service-oriented Architecture and its Application to Vehicles

HEEA - DOT =5 IR0 — =T DT =7
A M SERERET A - AT TR T
Bo ZAUTK L, ZEROFETTIL, FES = a Y OHEH
PRSI . FEEMRR END L. - AR T —F
TIFHICLY, EEfbEn AV F — T - A% R
52 ET, M—MICERDOMEZATH) T EHTE 5,

5. HfcEY—EZXDIBE

F—CRBAT —F 77 F v E, i fbshA
VE =T = ARBATHI LT, HADT— VA%
THIENTELIELIE, NETICHRE, ThH5D
P — A2 EHMHAEHLE L T, BIZEELT—E
AEREETHIENTE B,

—BIE LT, W= TH—ERAEEZ L), -
TOHE RS BT LIS U C. #Easo
LOFRIZEDE, FTuv 2Rl HAY<IHT)
REMATELIRIEICT L2 LD ReE 2 B, 720 M
LERE A —F =2 g YOMAICERT LI L L TX
B, BEICE-oTIE, dy MEHTHEOHW L 5B
Tho MWHLINA V7 —T 2 — A% HNT, filx Dk
¥x)/ IANTHIET, =Y T —E2LKeHH
HY L ENTEDL (K3,

6.5 D b [C

AAX T T4 P —%EHT LA, 7)V~ IET
(Internet of Things) T /3 AL EZ B ENTE B,
0T T NA ATH L7 V<N, Eifbshiz (27—
Tr—A%BEAT L, CDIHNTHE, HADL 25—
Tr— Ao - 2R MAEDLELIE T, BELR
P—UCARFEHTLIENTEL, 2F0, —H27L~fl
\HEHEAL I N2 V7 — T 2 — AFEATIUL, 7 V<%
7 L7zt d . TOEELINIZA V5 —T 2 — A% v
LT ET, Wi —CRAERRMT L LDWEEL 2 D,
I —VY AL 7 —T7 2 —AEALD X) v b TdH b,
PR T —F T F RS L 28T, EEL R
GOV VVOOVVOVVVOVOVOVOVVOVOVOVOVOVOVOVOVOOOOOOOC

Standardized interface

Phone apps 11

Navi touch screen

Switch input

Voice recognition

Navigation Navigation

Decider I——l Driver

Internet

D)

Information on the net

M-2 (EHREHY—EZX~NOERDO—H

Fig.2 An example of applying SOA to information services

19 NISSAN TECHNICAL REVIEW No. 84 (2019-3)

information from the data center of a vehicle manufacturer
or from the website of a third-party supplier. Requests for
such information can be issued through navigation system
screen operations and also a voice recognition engine,
among other ways. Applying SOA provides a standardized
interface that enables integrated processing of requests.

5. Construction of New Services

The foregoing discussion has described how the
implementation of a standardized interface based on SOA
makes it possible to drive individual services. More
advanced services can also be constructed by combining
a number of these offerings.

Let us consider a car sharing service as one
example. In the case of car sharing, a customer gains
access to a vehicle by making a request via a mobile phone
at the reserved time and has the door unlocked to enable
use of the vehicle. Necessary information can be displayed
on the car navigation screen, and it may also be possible
to pay the charge via the Internet in some cases. A total
car sharing service can be constructed by making requests
for individual service operations through a standardized
interface (Fig. 3).

6. Conclusion

When connected vehicles are made available, they
can be considered Internet of Things (IoT) devices. As IoT
devices, vehicles will be equipped with a standardized
interface. As a result, more advanced services will be
achieved by integrating individual services that have their
own interface. Once vehicles are fitted with a standardized
interface, new services can be created by using the
standardized interface even after vehicles have been sold.
This is one of the advantages of standardizing the service
interface. The promotion of SOA in vehicles will lead to
the provision of standardized connected services with a
high degree of extendibility.

7 .References

1) K. Oba et al.: The Status Quo and Challenges of Service-
Oriented Architecture (SOA) Based Application Design,
R R e T e e g

Standardized interface

Phone apps 1!
I | Navigation Navigation q)))
|
! Decider |—>| Driver
- Internet

Car sharing server

Information on the net

Door lock Door lock

1 Decider |——| Driver |

®-3 H—Y 7 DERD—HE]
Fig.3 An example of SOA application to a car sharing
service

Y—EREBA7—FTIF v ETILINDILHA

TIEEMOBE W 774 P —E 2523 T, IPS Japan, Technical Report on Software Engineering,
No. 75, Vol. 2005-SE-149, pp. 73-80 (2005).

.8 £ X W
1) K¥mdklIsr =V 2N 7 —F7 27 F v (SOA)
WZEDSL T T r =2 a VERETOBUIK &G, L
P WigeiRE Y 7 M 2 7 1Y (SE). No. 75, Vol
2005-SE-149. pp. 73-80 (2005).

B=#E Author(s) Ml

AV v
Toshiyuki Watanabe

B E # #R No.84 (2019-3) 20

¥%6E Special Feature '

BEEICBITEDTA/I\—tFa2UFT«

Cybersecurity for Automotive Systems

% =

HEJES A & =ty MIER SN E B o7z TA7 T4 FA—OFERIZHE, HE)

HIZOWThH, YA N—tF 2) F A WEPLBEIZ R > TETWDL, FAN—tF 2 71 Hiirizid, 21k
Ll 0Ny 1= ORE~OFIN L . HEMZEEISRO N, 22Tl — e A =X 74
DT V=T =720V THlR2 %, HEBBEIZBITL2HAN—tF2) T4 T L =07~ DOREIZD

WD

Summary

With the spread of connected vehicle technology, vehicles are also being connected to

the Internet. This means that cybersecurity measures also need to be applied to vehicles. Because
hacker attack methods are constantly changing, daily monitoring and prevention activities are required
using cybersecurity technology. This article describes a general cybersecurity framework and also
explains the construction of a cybersecurity framework at Nissan.

Key words : Computer Application, automotive electronics, cyber security, loT, computer,

software

1. [U & I

AR, ABHEAA Y5 — 3y MIERSND L)%
DNy =L BT Iy I DBBEDLDIILRY)OOH %,
12, 20154E 12T ANH A CTHME & 1172 Black Hat 7 >~
T7 LAV TlE, RTUA My B —I12 X D Jeep DI
BOHEFAFERS N, UL, Ja— VLERE b
LEREL R oTz, Stk XTI T A FH—DERT HIZD
. T AN—tF2) 7 45 RIFTVHDOEA & 7o T
5o

CDE)) AT ANOFETRILT H72012, KENCB
WCIE, 2013 4E2 H12 HIZH A N—tF 29 74 12T
B R4 4513636 5 [Improving Critical Infrastructure
Cybersecurity (EZEA > 75 DHY A N—tF 251D
M k)] 2 85845 &7z SORMESIZ. BEICBTS
PFAN—EF2) T4 DY AT ERETIRL, EFUEES
LFORANT G T4 A% FLOAESMBET, YRS
N=27 7 =FIZEIL [HAN—tFa)T 17—
LT—=7 | BRETHILEEERL TV D,

ZITIE, RN AN X2 T4 T L= LT —
ZIZOWTIHRR, 209 2 TEBEOHEICBI 28T —
AN WTIRHT 56

1. Introduction

With vehicles being connected to the Internet in
recent years, attacks by hackers are starting to become a
reality. Notably, an example of an attack on a Jeep by white
hat hackers was presented at the Black Hat USA security
conference? of white hat hackers in Las Vegas in 2015.
That incident led to a product recall to fix the software bug.
As connected vehicles become more prevalent in the future,
cybersecurity measures will be an indispensable technology.

To strengthen measures against such risks,
Executive Order 13636 (Improving Critical Infrastructure
Cybersecurity)? was issued on February 12, 2013
concerning cybersecurity in the U.S. That Executive Order
has provided support for cybersecurity risk management by
private-sector companies and mandates the establishment of a
cybersecurity framework on the basis of risk-based approaches
with voluntary participation for the establishment of
industry standards and promotion of best practices.

This article describes a general cybersecurity
framework and then explains the efforts being made for
the actual implementation of such measures at Nissan.

2. Cybersecurity Framework

Figure 1 shows an example of a general
cybersecurity framework. Cybersecurity measures are

* 7 b = 7B Software Engineering Department

21 NISSAN TECHNICAL REVIEW No. 84 (2019-3)

BEELCSIIZYA/N\—tFa1UF s

2. Y4N\—tF+aUF«TL—LT—Y

LI — A N—tF 2)T T L —LT— 2 %
Ko WHEOFAN—LF2UF 455 TIE, 1) VAY
FHii— (2) ZEL A VB~ (3) BAOFRMKHL—~ (4)
BHE = (5) ¥ ¥ AfkkE, OFODIEB %) K
LETT %,

(1) 0) A7 5

IR T4 N =03t v R—FHl, +7R8—F{
DM BRI D Do ROV AT AEEOH T, Ny
H—DBEORAANL BV FLEME TS v 7 —T 2R
ELTHET b0 CORAANLED L) LB E ST 5
M ZOEG R LB L 2R L TSR OB & PE T
%o
(2) P ZHEL A Vi

) A7 EICHI S 72 A 2k B AR R SR A R
HT 5, vX)T 4 MRICEREIXD VRO T, &Y
DERFER R & 25 SN A2 T CICY AT Ah5say
FIZRIREEIZRG S VWX A IZT B 72012, ZEL A Y ORH
KA T o
(3) ety B ADREIHH

MR L7280, %2 7 1 MRICEREL b DR w0
Ty BASNDENIFICHET 5. BASNIZGAE. B
B AZRINT 22 LD ETH D, BARMPTE
T ZELAYIHOZBLEH S NGE. ROBO
ZEREFE TNy =B E 2T TR AZRADL I EAST
& LELAYBEHOMRIRE Kb TLE), L
Ao T, RAORHIGHEIEL HET %,

(4) 0% - Al 2wt
BADHENE N2 6, MEICEA T EEEE L, Ky
MR % T,

generally implemented through a repeated cycle of five
activities: (1) risk assessment, (2) multi-layer protection,
(3) early detection of intrusion, (4) quick response, and (5)
business continuity.
(1) Prediction: risk assessment

In the case of connected vehicles, cybersecurity
involves both onboard and offboard measures. Points of
intrusion by a hacker attack in an overall targeted system
are identified as an attack surface. An assessment is made
of the types of attacks that might come through the points
of intrusion, their relative difficulty and impact, and
a decision is made concerning the necessity of security
measures.
(2) Protection: multi-layer protection

Protection measures are examined against the
risks identified in the risk assessment. Because no security
measures provide perfect protection, multi-layer protection
measures are applied. That prevents a system from
immediately falling into a fatal condition in the event the
first protection measures are breached.
(3) Detection: early detection of intrusion

As mentioned above, because there are no perfect
security measures, there is a constant threat of intrusion. If
an intrusion occurs, it is essential to detect it immediately.
If not detected early and the individual layers of the multi-
layer protection begin to be breached, the hacker can
spend time trying to breach the next layer, so multi-layer
protection losses much of its effectiveness. Therefore, a
function for early detection is provided.
(4) Response: quick response

If an intrusion is detected, a method against it must
be identified promptly and a countermeasure implemented
against the vulnerability.
(5) Recovery: business continuity

Implementing a measure against the vulnerability
will return the system to a normal state, enabling service
to be provided.

COOOOOOVVOVVOVV0V0VVVVVVVVVOVVVVVVVVOVVVOVVVVOVVOVVVVVVOVVVOVVOVVVVVVVOVVOVOVOVOVOVOVOVOOOOOOOOOT

(62) (€))
Protection Detection
Multi-layer
protection

Early detection
of intrusion

(4) (5)
Response Recovery

Quick Business
response continuity

(1) Prediction

Risk assessment

Management

6 (7

Security policy
and strategy

-1

Check by senior
management

®

Internal audit

—RNETAN—EFa2UT 1 TL—LDT—T

Fig. 1 General description of a cybersecurity framework

B E # #R No.84 (2019-3) 22

Cybersecurity for Automotive Systems

(5) [HfH : © Y AR

MeggtExf a2 dT o2 & T, ¥ AT A% IEH 2 IREE L 0]
BTL, =AM TEE LI 5,

Eigo 1) »5 (5) TTOEBEREYELFEITT LS
ET, AN F 2 T A RREFEHT LI LEHTE
BHo —H. XAVAVIMNETIR, £F2) T A EDSA
I NEE LTSN L) ICEHZIT) .

6) X2 T 1 DR L EENE

TAT AV MNETILGEICE, FTEX) T4 ORY
DO R RET DLEN D L, TIUEDE, SOk A
FEFEM L, X o) T e EET 5,

(7) V=273 TJ AV MIEBFLY Y

TFAN—tF) 7 43 FRAEYNFERE SN D 72012,
FHIIC Y =27 <A Y AV MERIRLEF 2y 7T 5,
(8) WPk

tF) T A REHIED SN T O AN LA o Tk
JAENTWAEZ L 2D 57212, WEREL > EHIC
FEiT %o

3. HELCSBIFSYAN—tFaUFT«TL—LT—ID
SKRHEIAST

2ECT— MG AN—kF2) T4 TL—LT =7
DWTIRARAY, RETIE, HEICBT A2 N—t %2
V74 7L —AT— 7 DOFERIRIIZ OV TEARAIZHE R
%o

(1) PV A7 5

NI AR E 2 A, ISk, AL
OO ENRT Yy 7 —T 2 A b, ITSY AT

Cybersecurity measures can be put in place by
repeating this cycle of activities from (1) to (5). At the
management level, meanwhile, the following are managed
so that the cycle of security measures can be continued.

(6) Security policy and strategy

In order to manage the cycle, it is first necessary
to decide a security policy and strategy. On that basis,
the process is then defined and operated and security
measures are promoted.

(7) Check by senior management

Senior management periodically checks the
implementation status of cybersecurity measures to ensure
that they are being carried out properly.

(8) Internal audit

Internal audits are conducted periodically to
confirm that security measures are operating according to
the established process.

3. Status of Cybersecurity Framework Implementation
at Nissan

A general security framework was explained in
Section 2. This section describes in detail the status of
Nissan’s implementation of a cybersecurity framework.

(1) Prediction: risk assessment

When considering hacker attacks against vehicles,
the principal attack surface is via wireless communication
from outside the vehicle. It is necessary to envision attacks
coming through information devices, including an ITS
system, telematics system, navigation system and so on. In
addition, it is also necessary to envision attacks through
paths connected to external networks indirectly. The
following are some examples.
¢ Charging terminal connected to an electric vehicle (EV)

charging station

OOV OVOVOOVOVOVOVVOVOVVOVVVOVVVVVVVVVVVVVVVVVVVVVVOVVOVOVVVOVOVOVVOVVVVVOVVOVOVOVOVVOVOVOOVOOOOOOOO

LANT —% 7 7 F v Bl
LAN architecture
protection

T 7 ARA v N
Access point protection

Gateway

Key
management

IR — 4 b5
Communication
data protection

ECUP;#
ECU protection

~

I / Filtering/

i \v/ routing

1

: In-vehicle DCM: Data communication module
.é DLC: Diagnostic link connector

ITS: Intelligent transport systems
H/U: Head unit

X-2 BHEECHISSZEREOERS

Fig.2 An example of multi-layer cybersecurity protection for vehicle systems

23 NISSAN TECHNICAL REVIEW No. 84 (2019-3)

BEELCSIIDYA/N\—tFa1UF«

Ay FLRTA A, FEF =3y EOREHAKE
LTy 7R EETAERETHL, UM T, 1
AR A v b — 2 1 ZHEE S N D RO L A E
TLUENH D, TRIIZOHITH S,

cBAHBHE (EV) HOFLBEAT— a3 v LEhdT 27
EI T

e AX— M7 4 URAE FINA ABHEHET B USBHR— b
o T T == VATINA ARIENHEE DY 3 R T
ThHLHEEI AT Y

Z) LR TR SNE TN ADS, Ny =D
AELENTVWLIREMEEZRE L 2 7 1UX % 5 7%\,

(2) PR3 ZEL A VM

RO AT S ORERE LT, RS2 WS
BIAVENLIWENT Y v 7 —T 2 A Db, I
WL, ZEHLA Y CTORMMRIEETH S, X212
HBIZRS e TV I —T 2 AEBRDT 7 EARL
DEREFTOHAPHELL A XY THDLH, TNIIA T,
HWETF— b7 oA 2720, CAN (Controller Area
Network) 7 EOHEABRET A L IZBUTLEET—51C
xt9 AP, 2L <. BEloETEGIE T 5 KECU
(Electronic Control Unit) IZxJ$ A HO=>DL 4 ¥ %
T Tn5,

(3) i AR A D FHIRH

PRENLE LR BIE T — ¥ REECUDY 7 b7 2 7121,
TR—EAP TN AT e L., @A 5
CENTER L), BB AR L CEdnsn
Vo 7ok 2R BET— 71213 A v b — VREEES S (MAC)
ZRIL. ELWHTLSOEETEWT &AL 723
HFUEZOBET—YEREL, o WSATTbIZZ
EaxbXa) T4 ARV =2 a by MY 5, 20
£ THTET, UEADTONZ &2 BN T
5L LTWw5,

(4) IVE AR

YWEADPTONIZGEITE, HERSEF2) 7 1 F %
L—Yartery |\ @Hshs, 22Tk, 7y 70— F
ENERICIEDE, LEADEKN LR ELWET, FhE
ENb, BARBIZE>TE, = RZHITL, HEiljz
Ay N T =7 ST B LENEETLEALD D,
(5) HfE : ¥R A

LFX) T AREDET Ly BHiliE Ry b — 7 I
B L C. lEOF—EAEHIIERTEDREICR 72
5, VAT LAERHEIBS S - X R HET 4,

6) ¥AT AV b

PEo 1) »5 5) TTOHERE)ELFEITTED
92T 570, X274 K) DO, £F 2
T AWM ERITV, SO E, HETIE., BHED
NERA A N = F 1) T A EH 2 L T b,

* USB port for connecting a smartphone or memory
device
* After-sales service device or diagnostic communication
connector for connecting a PC by a service technician

It is necessary to consider the possibility that
devices connected to such paths might be a springboard
for hackers.
(2) Protection: multi-layer protection

The results of the foregoing analysis indicate
that attacks via information devices and diagnostic
communication lines constitute an attack surface. Multi-
layer protection measures are important against such
attacks. Figure 2 shows examples of the protection applied.
The first layer is the protection provided for various
devices at access points that become the attack surface. In
addition to that, protection is also provided at three layers:
protection is provided using the communication gateway,
protection is provided for communication data transmitted
through an onboard communication line such as the
controller area network (CAN), and protection is provided
for each of the electronic control units (ECUs) that control
the operation of a vehicle.
(3) Detection: early detection of intrusion

An authentication function must be provided
so that if by some chance communication data or ECU
software requiring protection is falsified, it can be detected
and notified. For example, a message authentication code
(MAC) can be added to communication data; if it is
detected that a message is not from a proper party, the
communication data are destroyed. An occurrence of
falsification is reported to the cybersecurity operations
center. These security measures enable early detection of
any falsification.
(4) Response: quick response

The security operations center is notified in the
event a falsification has occurred. Based on the uploaded
data, the center investigates the cause of the falsification,
examines a countermeasure and implements it. Depending
on the path of the intrusion, it may also be necessary in
some cases to discontinue service or to disconnect the
vehicle from the network.
(5) Recovery: business continuity

After security measures have been implemented
and the vehicle has been reconnected to the network so
that the normal service system can be recovered, the
system is restored and service is resumed.
(6) Management

Nissan has established a security policy and
formulated a security strategy so that the cycle of activities
from (1) to (5) above can be repeatedly carried out. Based
on that policy and strategy, Nissan is currently taking
further steps in turn to build a cybersecurity framework.

4. Conclusion

Cybersecurity measures are not temporary
activities, but rather it is essential to promote such

H ZE ¥ #R No.84 (2019-3) 24

Cybersecurity for Automotive Systems

4. 5 Hb b [

HFAN—tF2) 74 xKIE, —BEOEETIE% L,
WSRO T i B O HEEDS B CH) . HEHBHE CIX, oh
EHFEZ T, SBROBIEHEHEEL T

5 8 £ ¥ #t

1) BlackHat 2015 : http://www.blackhat.com/us-15 (% &
H : 201849 H25H).

2) KEE N AEERATFEAT A7 Bk NI LB
Hetl) - BEA 7 TDOFAN— - kX2 T 1 2L
SELODOT VL2077 — 2781, https//www.ipa.
go.jp/ files/000038957 pdf (ZMEH : 201849 H 25 H).

activities continuously. Based on this recognition, Nissan
will continue to promote cybersecurity activities in the
years ahead.

5. References

1) Black Hat 2015: http://www.blackhat.com/us-15/ (as of
September 25, 2018).

2) National Institute of Standards and Technology,
Framework for Improving Critical Infrastructure
Cybersecurity, Version 1.0, National Institute of
Standards and Technology, https://www.nist.gov/sites/
default/files/documents/cyberframework/cybersecurity-
framework-021214.pdf (as of September 25, 2018).

WE&_ Author(s)ll

5 T E B
Masaaki Miyashita

25 NISSAN TECHNICAL REVIEW No. 84 (2019-3)

¥%6E Special Feature '

SAT VIVINEZDIARSI

SAT Solver and Application Examples

o A

Junsuke Ino

73 87 SAT VIV NIE, FERTEEMERIE (SAT) %< 7200 NTHEE (AD V=)V Th b, T
WREMRIE 2 1L, WA WA LRHRIGEYN S 2 GE12. TNOETRTCHZTHE RO LMEOZ L Th b,
1990 EMUHIF Tl I ¥ ¥a— & OMEEmOHIFI R SAT VIV SHEOMERED A 5, LI HEE & &
NTWzd, HEET LV Ea—F L&y — Vil OMERER EDK S, ERLSNE L)1k o7ze —J7 B
HEDH A — 7 3B E OEBRZ EHi L T2, T A MRS EER O /20, EERHERH 0O &#E{LIX
JFFICEETH L, Al EEBRERHEFHIESRIZSAT YV VAZIEHT S N T4 7V a7, HEYFEEREL
AARER O FALD Rl L #1572,

Summary A SAT solver is an artificial intelligence (Al) tool for solving the satisfiability problem
(SAT). The satisfiability problem involves finding a solution to a given set of logical constraints. Until the
first half of the 1990s, it was said that it was difficult to apply a SAT solver to real-world problems due to
the limitations of CPU power or SAT solver performance. However, because both CPU power and SAT
tool performance have been improved today, SAT solvers are now applicable to real-world problems.
Vehicle manufacturers conduct hundreds of tests, so an optimized test vehicle schedule is very
important for reducing costs and time to market. An attempt was made in this work to apply a SAT
solver to the creation of a test vehicle schedule. The results showed the feasibility of creating a tool for

automatically generating a schedule for allocating test vehicles.

Key words : Computer Application, Al, satisfiability problem, SAT solver, computer

1. [U & [

SAT V)L NI, TR RETERE (Satisfiability problem,
SAT) % < 72 o N T H1EE (Artificial Intelligence.
AD) V=V THb, SAT L1E, WABWALKIKEEL D
LHEIT, ENO TN HE RO 5MENZ &
Thbo SATVY IV NNEHWDLIGA, Sl EM % mitic
TIL, TNESAT VY IUNIZANT BULERH L, &
SAT VW%, FEEREOREFH Z/ERT 5 2 & IZI0H
TERVBDPRHET L7720 U2, ZONEZHNT 5,

2. SATEIE

T TR, Ty 5 I 7BV T A (true)
&[5 (false)] O 2B % & 57— 5 #O—D>TH D,
T=1) 7 YROSAT VIV NI, 1990 4EA8H T IR, T
WICEEED R H N7z ZOEMEE LTk, SAT A HE)H,
Wuze, EWEL Er &4 OEE T, WEOMEIZE
HTX57:0TH 5. SAT I IIHIFIHE, HAEDEIE,
REILEEZE L oD T L =27 =2 L LTRSS
nNTnb,

1. Introduction

A SAT solver is an artificial intelligence (AI) tool
for solving the satisfiability problem (SAT). SAT refers to
the problem of finding a solution that satisfies all the
various constraints involved. In order to use a SAT solver,
the constraints must be converted to logical expressions
and input to the solver. A study was undertaken to determine
if a SAT solver could be applied to create a schedule for
allocating test vehicles. This article describes the study
details and results.

2. Overview of SAT

In programming languages, the Boolean data type
refers to a data type that has two possible values denoted
as true or false. Boolean SAT solvers have been dramatically
improved since mid-1990s. The motivation for that was the
broad applicability of SAT solvers to actual problems in
many fields, including automobiles, aircraft and biological
science, among others. SAT solvers are widely used as a
framework for solving constraint problems, combinatorial
problems and optimization problems.

Many actual problems can be modeled as a
combination of logical expressions representing the
constraints involved. For example, consider that a vehicle

* 7 b = 7B Software Engineering Department

H ZE ¥ #R No.84 (2019-3) 26

SAT Solver and Application Examples

HEOMBEDL 1. &M% ETmMOMAE
b TETMET A LN TE L, 722218 HAH7 V<
BLis fou fon fru SO DO DBERE (SAT O HFETIZES
EIFEND) ZFEHOGAET, INOHL A AT Ik, &F
SELERBOMAEDLE L EBIRTE L LT 5, HEAIE
AT (Automatic Transmission). ##EAIEMT (Manual
Transmission) & 3%, ZILS DRREEIIZHIRISEMEDRH D |
CHUTFRHATER T LI LN TE D, TOHAE. Hl#5
e LT, “PASTIFATEMT D) 6, WFhp—>
EBEIRTHIENTEAD, MGFEERT L LIETE R
W kWA ZEREITEN S,

COHFEBOHK G ETWERIE, C={fiorfo nor(fi
wdf) THhH, 22T, COROBIOEIL, fik OV
TNPHPEBRENHZLZRKLTHY, ZOHOHIL, [
FRICAL AR BEBIRT DI ENTELWILEERL T D,
C=true L C& 5 & OMED, COWBTH D, ZOFITIE,
e E, BEATTREZ: 7 VY ORRFEDOMA G HETH DL, D
ESUIN ﬁ=ﬂueandﬁ:ﬁlseﬂiﬁgf“§)57b§\ 1= true and f> = true
IERETIE R\ ,

GlEfEX, FRABEREAD D AIZDWT, RSt % Fal
KNTEIT L, 72& 213 WRELPFIET 26, HREf
FAIBEADHFTE L R TR nZ 35, 2iud
(fzimp/z’es(fsorﬁ))&%jﬂl ENTE S, T2, ﬁﬂ%lﬁ!ﬁﬁﬂij"]
TaviERETH DL ETDH, ZDOLGE. (fs or (natﬁ))k%?L
ZENTEDL, TNHDEERAD S E TOTXTOHIK
FHEELoT, UTOL)IRRBT LI ENTE S,

- Afi or f2, not (f1 and f2), (f2 implies (3 or f2)), (5 or (not f5))}

C OB AOMIL, WIS EEATRER 7 L~ OFRE
DA EDLETH Y, MOKEIL, BEA LS HEEOHM
AEDLEORBEERT 50 € LT, BIFELZWY
A R AIREICH) . FIRRIFOERISRD
B HUREEDH H 2 L 2B L T\,

3. SATVILINER

SAT VW NICHIFI G OB A)T 5 &, SATY
WNIZHBINIZZ O ER L, ZHOMBENET %,
SATIE—HIWICEE L WIETH), Tha@ilonT
W) AN, TOMERZHEVREL Lho
726 L22LEAHTIE, WOPDMWFED BWSAT VLN
BHFEENTBY . MEAD ST OEED SR S 5]
WEMOBMA ML ZENTEDL, TOSATHATDE
HIZED, MEZREATEIL, SAT YV VW NE HnT
i85 2 EDBFEICFERALEINL L)k o7z, 7282
X739 R Yices? EDTFTA Ly A7) —DOWERED B
SAT VIV SHSFIHTTRRIC 72 o T b,

27 NISSAN TECHNICAL REVIEW No. 84 (2019-3)

has five functions denoted as fi, f2, f3, f1, and f5 (which are
called variables in SAT terminology) and that customers
can select various combinations of these functions. We will
let function fi denote an automatic transmission (AT) and
function f2 a manual transmission (MT). These functions
are subject to constraints that can be defined in logical
expressions. The following is an example of a constraint: “a
customer can select either an AT or a MT, but cannot
select both.”

The logical formula that expresses this constraint
is: C = {fi o7 f2, not (fi and f2)}. The first term of this formula
indicates that either f7 or f2 can be selected. The second
term indicates that both f: and f2 cannot be selected
simultaneously. The values of f; and f2 that produce C = true
represent solutions to C. In this example, solutions mean
the combinations of vehicle functions that can be
purchased. In other words, fi = true and f> = false is a valid
solution, but fi = true and f2 = true is not a solution.

Next, we will express the constraints of the remaining
functions f3 to f5 in logical formulas. For example, if
function f> exists, it is assumed that functions fz and f«
must also exist. This can be expressed as (fz implies (fs or
f1)). Function f; is treated as an option. In this case, it can
be expressed as (fs or (not f5)). All the constraints of
functions fi to fs can be summarized and described as
shown below.

- \f1 or 2, not f1 and f2), (f2 implies (f3 or f2)), (5 or (nor _fs))f

The solution to this logical formula in every case
is the combination of vehicle functions that can be
purchased. The total number of solutions represents the
total number of purchasable combinations of functions. If
a solution does not exist, it indicates that the constraints
are in a state of conflict and that there may be an error in
the constraint definitions.

3. Overview of SAT Solvers

When the logical formulas of the constraints are
input to a SAT solver, it automatically generates a solution
and responds with the values of the variables. In general,
SAT is a difficult problem for which there were algorithms
for solving it, but they were not very efficient. However,
several high-performance SAT solvers have been developed
nowadays that can solve logical formulas of constraints
composed of several hundred to several thousand variables.
This progress of SAT technology has resulted in the actual
implementation of SAT solvers for obtaining solutions to
problems expressed in logical formulas. For example, it
is now possible to use high-performance SAT solvers like
the Z3 theorem prover® and the Yices SMT solver? on a
license-free basis.

4. Simple Application Example: Using a SAT Solver
to Set a Meeting Time

This section describes an example of a SAT solver
application as a simple tool for setting a meeting time.

SAT VILINEZ DRI

4. EEEIZILEAG] : SAT ZAVcAEISRRE

T ITIE. B aEREY - VE HWT, SATY
WNDIGHBIERRNT 5. SANOANWH»HLH, LLTO
FE%0110, 11, 12,13, 14, 15,16, 171 2> H 4R F 2 1K o0 43 3
BAITVWIZWEEEE 2 b0 SADOANWIE. ZBEpi pon ps
FHOWCERBR T2, /22T, 7= 7 v HoME
isAvailable(p;, ¢ NEEZ b, COMBIE. I OMHET 5
1M OM. ANWpPRETREROB A truekilld, OF
UN lsAvﬂzlab[e(p1 10) 14, /\#@]HVJ‘ 108525 118 F TR
THE T DA true %Ko

—ﬁ\AE®$Wfi\A%puwof% Ak RE &
T 5o Tl AWpo L 11IHE, 131, 151K, 160K, 17IHFIC
KmT%tﬁé Z LT AWps (X108, 118, 138, 16

IZRRTREL T 5,

_frlf‘o@%ﬂw"]*#% AHEAICEH L, SAT VL NIZA
HNTBZETHERD DL, ZORFBWTRELIENZ RO %
EVIH HEIE, DT OB 52 &0 T& 5,

\(isAvailable (p1,10) and isAvailable (p2,10) and isAvailable (p3,10))
or

(isAvailable (p1,11) and isAvailable (p2,11) and isAvailable (ps,11))

or

(isAvailable (p1,17) and isAvailable (p2,17) and isAvailable (ps,17))f

FRORENITIL RIS, LTOXH)IcRT LT
R
110 < tandt < 17 and isAvailable(p, t) and
isAvailable(pz, t) and isAvailable(ps, t)}

LR OFH R A2 SAT VIVNIZ AT B E, SAT VLN
X% 1017 OFPF TR L, X2 0E S8 5%
T, COBEE, DTF=E2o00ndhroiEmaiid,
oL L FREOFEAF L XD DMEIFALET HHE
SAT VIV, Wi S MHEO—2%MET 5, 2O
L, B EFWLSELEEDODETH D LI
BT LUEDRDH D, ZOMEIL., MLSELHEOTT, &
W, et TN MR ETHEPE) PEbI SR,

o3 L LELDF ET%(FEE%%%:@FE#@EL&W%
By SAT VIV NIE, “BIHS& 072 3T L
EVH XA A Yy =T ERAKT B,

oy L LELOGEEANSAT Y W NNIZE S TRET X LY

AGld. SAT VIV NI K E I 2 21T 5 26, F 721 R
%UKET%ﬁ%*t?éo

LFEROBITIE, Z00XFETRLRY A L A0Y MDD
bo ThbbH, 11K, 1IBKEB LI TH S, SAT VIV
N, E0OXHETEER Y 1 A A0y POROWTIL)—
D% MET %,

Consider that three people want to hold a one-hour
meeting on a certain day starting at {10, 11, 12, 13, 14, 15,
16, or 17:00}. The three people are represented by the
variables p1,pz,ps. We will also consider here the Boolean
datatype function isAvailable(pi, t). This function returns
true if person p: is available to attend the meeting for one
hour starting at time ¢. In other words, isAvailable(p1, 10)
returns true if person p: can attend the meeting from 10:00
to 11:00.

On the other hand, let us assume in this example
that person p: is available to attend the meeting at any
time, that person p: is available at 11:00, 13:00, 15:00,
16:00 and 17:00, and that person ps is available at 10:00,
11:00, 13:00 and 16:00.

These constraints are converted to logical formulas
and input into the SAT solver to find a solution. The problem
of finding an available time for the meeting can be converted
to the following logical formulas:

\(isAvailable (p1,10) and isAvailable (p2,10) and isAvailable (p3,10))
or

(isAvailable (p1,11) and isAvailable (p2,11) and isAvailable (p3,11))
or

(isAvailable (p1,17) and isAvailable (p2,17) and isAvailable (ps,17))f

These logical formulas can be further simplified
and expressed as:

110 < tand t < 17 and isAvailable(p:, 1) and
isAvailable(p, t) and isAvailable(ps, t)}

When this logical formula is input into the SAT
solver, it searches for a value of ¢ within the range of [10 ...
17] and seeks a solution that will solve the logical formula.
This search produces one of the following three conclusions.

e If values of ¢ exist that satisfy the logical formula above,
the SAT solver returns one satisfactory value. It must
be noted that this value is an arbitrary value of ¢ that
satisfies the logical formula. It is not known whether this
value is the first, last, minimum or maximum, etc. value
among those satisfying the formula.

e If a value of ¢ satisfying the logical formula does not
exist, the SAT solver returns a messaging that “a
solution satisfying the constraints does not exist.”

« If the logical formula is too large for the SAT solver, the
solver either continues processing forever or suspends
processing because of insufficient memory.

In this example, three time slots are available
for the meeting, namely, 11:00, 13:00 and 16:00. The SAT
solver returns one of these three available meeting time
slots.

5. Application to a Tool for Scheduling Test Vehicle
Allocation

A study was made of the use of a SAT solver to
develop a tool for automatically creating a schedule for

H ZE ¥ #R No.84 (2019-3) 28

SAT Solver and Application Examples

5. REREECEHEEEMRY —IL~DILNA

Alal, SAT V VN % FIGT, SEBRE AL 0 ARk —
VAT A L2t Lz EBREOREIZIE, WD
ORISR H B, LITIC, REMZFERIICET 2
ROV CEAT 2,

(1) EBoRiREREE

B0 SEERA L EERBIIIKAFBIR2 S 1 . FEERA S
TLRWEFERBABIGTE W,

(2) [Fl—FEBRERE

) 0 SEERC L EBRDIX, [F—3EEE (0015 8#) % Hw
TEBL LTI RO\,

(3) EEpE 54

B SEERE S, B (0025 8) 258 L CEBRTITH .
fhoFERE, 0025 H A2 W THERT LI ENTE LV,
(4) [F—FERIxbd 5 iy

B0 FEBRFIX. SFEBR A AT O B R X 48 2 O KB
(Lab#1) T%& L TldZR b4\ Tz, ikl X FECFE
T LEBRBICHIF 2D 5o
(5) EBROBEINERL

Bl SEBIEE I, EREM R TREEE) AT 5,
BERIEM OB (FBHoRKE V) FEEIZ. BRIEM 0K
WEEBR L D EICERE L 2 { TE AR S %\,

(6) ik

B EBEOENLIL. KT 2 & TERHEY
%) T LEBTE DD, EHE T 72095 EBREOH %
i, BEAREEIM A5,

(7) BRI o fEE

B FERRIC LD RESETRINR L %, FEERGIZAY
VFRPIEE TIZE T LA T e b ws, EEHIE b
V) ATEIRE T T v,

(8) WIRIHMHEE S D FBR

B - SEHEERIL, LAFOED LN OARTLHE

BRCE 7\,

FREoOHIR 2 R TRR T 22012, EERTIC

OWTC, UTOERBZHVWLZE LT 5,

e Veh(T) i&. EBRTHTbN L MFHEE R,

e Mod(Veh(T)) i3, FEERTIZHW SN2 RIEFEM DO H:KE
BT, (BW/NY T—3 3 v =FF ILVOIFE)

e Loc(T) 1. EBRT D31 % FEERIGHT - FEBR%R % 7”3

e Days(T) 1. EBRTOFTERE RS,

e Pr(T) i, FBRT OELIEM 2R,

e PS(T) &, FERTHEAEROYGEIL1, HAERTR
WIHAIZ0ET 5,

* STR(T) £ END(T) {Z. FEBRT ORIMGH L#THEZRT

EREOHIFIFMFIZT O L)1, WwHATEBR S22

29 NISSAN TECHNICAL REVIEW No. 84 (2019-3)

allocating test vehicles. The allocation of test vehicles
involves several constraints. Typical examples of constraints
concerning test vehicles are explained below.
(1) Specification of the order of tests

Example: There is a dependency relationship between
test A and test B. Test B cannot be started until test A has
been completed.
(2) Specification of the same test vehicle

Example: Tests C and D must be conducted using
the same test vehicle (vehicle No. 001).
(3) Test vehicle occupancy

Example: Test vehicle No. 002 is occupied for the
conduct of Test E, so other tests cannot be conducting
using this test vehicle.
(4) Facility constraints for the same test

Example: Test F must be conducted using a
specified test facility (Lab #1). The number of tests that
can be conducted at the same time with this facility is
limited.
(5) Order of test priority

Example: An index showing the order of priority is
assigned to every test item. Tests having a high priority
(large index value) must be conducted before tests with a
low priority.
(6) Transport

Example: Domestic transport of test vehicles is
done at night so that tests can be conducted without
affecting the test schedule. However, time is needed to
transport test vehicles that are used at test facilities in
other countries.
(7) Types of test deadlines

Example: The deadline for completing tests differs
depending on the test. Test G must be completed by the
deadline for procuring metals. It is all right if test H is
completed by the deadline for procuring trim parts.
(8) Tests having a specified term

Example: Cold-weather tests can only be conducted
during the interval specified for the winter season.

The following expressions are used concerning test
T in order to describe the constraints above in logical
formulas.

¢ Veh(T) indicates the prototype vehicle to be used in
conducting test T.

* Mod(Veh(T)) indicates the specifications of the prototype
vehicle to be used in conducting test T. (Vehicle variation
specifies the model.)

¢ Loc(T) indicates the test site and test facility to be used
in conducting test T.

¢ Days(T) indicates the number of days needed to conduct
test T.

¢ Pr(T) indicates the priority of test T.

* PS(T) is denoted as 1 if test T is an exclusive test and as
0 if it is not.

¢ STR(T) and END(T) indicate the starting and ending
dates.

SAT VILINEZ DRI

ENTEL, —HOFHI %R,

SinFH FEBRA L ERBIIMKARER S D EBRA
DT LW EFEBRBA BB TE 2\,

> B - END(A)<STR(B)

SREERM C FEBRC L EREDIX, F—FBHE (0015 H)
EHWTERL 2 TR SR\,

» st 0 Veh(C)=Veh(D)=1

SAEEB EREIR, EBRE (0025H) ¥ 5H L TE
BRAEATH o MMOERRL, 00252 HWTHEBRTLZ &
MTE %V,

» Bt - PS(E)=1, Veh(E)=2

SRERB ERRFI, ERRAAT) B R O FEERRL I
(Lab#1) T TER b AV,

> i Loc(F)=Lab#1

F/o. AL NHRSEN & DT L) i

KTEHTE D, —HOFEFZRT,

o AL SINIHFISH - FOERDHHEBRDY
G, EREITZ0OEBROOZTICHWSE LS,

» i B\ - for all tests X, if PS(X) = 1, then for all tests Y,
if (Y # X), then Veh(Y) # Veh(X)

o At NoHIF LM - BV EEIEA O FEERIE
o &) AERNBIENERL O FEERANA F 5 BN FEhE S 7z <
TIIm 570,

» PR ¢ for all tests X, Y, if Pr(X) > Pr(Y), then END(X)
< STR(Y)

DB RCOM &M% mEIIEH L, SAT VN
WCATILT, B2H50%HAET 5, SATYMNE, Z
NHOTXTORERA ML S E L ET Z & T
NSRS EmE ST HEEE S, SAT VLN
id, =2 TLE 2 NI RTCOBRKEMN /-3 2 e
TELGAE. EHTREZHBELRIET 5. G %
JETELZWIEEE. fINEGT e S HEPHFEL L
W2 ERAET D BEDOEE, WG ERML T, F
B, WIRISM 2 S8 5 HEFEV 2 OME %, SAT
VIVNE HWTERT 5,

6. & R

A AlESAT v)V 3 & LT, Microsoft Research %% B &
L72Z3%Hwize #L T, FIATIVORE, Litx &
LI NCORF M2 RERITEHR L, SAT VIV /NI
9 HZET, EFREOMEEHZ HEIIAERTE 5 A
WLEE, SBRIEIZOY—VEGEHT AT, HIZH
MR N 2= g VL BEBERRAEHZRD 5
LT, RN = g Y EERERHO ML — FE T
SWEAT) ZEDTEDL I RBEEZLNS,

Logical formulas of the constraints above can be
expressed as shown in the partial examples below.

e Linguistic expression: There is a dependency relationship
between test A and test B. Test B cannot be started until
test A has been completed.

» Logical formula: END (A)<STR(B)

¢ Linguistic expression: Tests C and D must be conducted
using the same test vehicle (vehicle No. 001).

» Logical formula: Veh(C)=Veh(D)=1

e Linguistic expression: Test vehicle No. 002 is occupied
for the conduct of Test E, so other tests cannot be
conducted using this test vehicle.

» Logical formula: PS(E)=1, Veh(E)=2

e Linguistic expression: Test F must be conducted using a
specified test facility (Lab #1).

» Logical formula: Loc(F)=Lab#1

“Generalized constraints” can also be expressed in
logical formulas as shown in the partial examples below.

¢ Generalized constraint: In the case of an exclusive test,
the test vehicle will be used only for that test.

» Logical formula: for all tests X, if PS(X) = 1, then for all
tests Y, if (Y = X), then Veh(Y) = Veh(X)

e Generalized constraint: Tests having a higher priority
must be conducted before other tests having a lower
priority are started.

» Logical formula: for all tests X, Y, if Pr(X) > Pr(Y), then
END(X) < STR(Y)

All of the constraints above are converted to logical
formulas and input into the SAT solver, which calculates
whether a solution exists. The SAT solver searches for
variable values that satisfy all the logical formulas.
As a result, a schedule is obtained that satisfies all
the constraints. The SAT solver returns an executable
schedule if all the constraints can be satisfied, even if
just one constraint is given. If the constraints cannot be
satisfied, the SAT solver returns a message that a schedule
satisfying the constraints does not exist. In the latter
case, the constraints are eased and the SAT solver is used
to examine once again whether a schedule satisfying the
relaxed constraints exists.

6. Results

The Z3 theorem prover developed by Microsoft
Research was used as the SAT solver in this study. All the
constraints concerned, including those noted above, were
converted to logical formulas and input into the SAT
solver. The results of this trial showed the possibility of
using the SAT solver to automatically generate a schedule
for the allocation of test vehicles. It is planned to use this
tool effectively in the future to find the number of test
vehicles needed relative to the number of variations of the
vehicle specifications. It is expected that this will enable
us to analyze the trade-offs between the specification
variations and the number of test vehicles needed.

H ZE ¥ #R No.84 (2019-3) 30

SAT Solver and Application Examples

7. 8 b b |[C
73%1Z L ETHSAT VU NIE, FEH - IHTReZ B
e o TET0b, —h, FEHEITIESAT A% L AFEFE
T 5o EBEOHBEEIL, FO—2THLH, TNLA
W2, EHOTAVYN—FADN) L —2 g ETA D
Mz & L OMEICHATRETH S, EHEOMFELE
AT %720, SAT VIV /N% ZFEOREILIZIGH LT
WX 720,
8. & & x Wk
1) The Z3 Theorem Prover, https;//github.com/Z3Prover/z3
(ZIEH : 20184E7 H15H).
2) The Yices SMT Solver, http://yices.cslsricom/ (g
H 201847 H15H).

7. Concluding Remarks

SAT solvers, notably the Z3 theorem prover, have
reached the stage where they can be used in actual
development work. Meanwhile, there are many SAT
problems in the real world. Scheduling the allocation of test
vehicles is just one example. SAT solvers are applicable to
many other actual problems such as the issue of vehicle
wiring harness variations and cost. It is planned to apply
a SAT solver to resolve various types of problems in order
to promote higher operational efficiency.

8. References

1) The Z3 Theorem Prover, https://github.com/ Z3Prover/z3
(as of July 15, 2018).

2) The Yices SMT Solver, http://yices.csl.sri.com/ (as of
July 15, 2018).

WE&_ Author(s)ll

i

31 NISSAN TECHNICAL REVIEW No. 84 (2019—3)

i
Junsuke Ino

i

¥%6E Special Feature '

VIR I 7 REWREDEHDY TS A VEIETH)

Activities to Improve Software Quality through Supplier Management

Ao oE W A =

Naoki Arisaki Yukiteru Yamamoto

) 7 e, HEBIE X —Hd, HEET AT LAOECURH 7T 4 YIZ5IET 2124720 . ZkAE
MEAIRL, V7 P 2 T2 E0ECUREME LCHET 2D — KN TH ol IO, BV 7
Py 2T D%, FTIATICE VB EN TV, — T, EHENL Y 7 Y 2 7 OB 512
O, V7 Mo TIZET A MERED AL HEIE A =D IE BRI L. 2V~ OB E RIET 5
VHIZH D, LD oT, VI Mo TICHTAMEL R L 2 TRA SRV ZOME, 75470
%32V 7 by 2 7 OMEEHMAEE LT —~ L hotz. TOLD HFE,S. HEABETIE, 20014
EVEMOY 7 by 2 TEMECL DT IANIIRHT LY T My o TanEE B A L 7. & 2T,
ZOMEEHISEHONEEHAT 5o

Summary When placing an order with a supplier for an ECU for an automotive electronics system,
a car manufacturer normally provides the required specifications and buys the ECU, including the
software. Consequently, the majority of automotive software is developed by ECU suppliers. As the
volume of onboard software has increased over the years, software issues have also increased. As a car
manufacturer, we are responsible for guaranteeing the quality of our cars to our customers. Therefore,
we have to guarantee the quality of the onboard software as well. Quality control of software developed
by suppliers has become an important issue. Against this backdrop, Nissan started a team of skilled
software engineers in 2001 to conduct software quality management activities for suppliers. This article
describes the details of the quality control activities that we have carried out at Nissan.

Key words : Computer Application, automotive electronics, software quality, embedded
software, SQA, computer

1.1 U & [1. Introduction

Nissan began conducting quality audits of software
HEBBHIZBITS " 7IA4VICHTLY T 72T received from suppliers in 2001. Accompanying the

SIS 13, 200L4REICHEE o0 A—T L2 =2 A penetration of car electronics, the number of onboard
DTN 27 V< 10 X 1L 2ECU (Electronic electronic control units (ECUs) has continually increased.

The dozen or so onboard ECUs in use at the end of the
it) OB LT SAMESE: . ; .
Control Unit) ORI L#ELT, 1990 AR 142l 1990s rose to 80 in 2015, with the source code reaching

CTh o7 ECURUL 201541213801 (7 MTESMLOC 35 million lines of code (MLOC) (Fig. 1). The software
) ICE 572 (1), ECUICHEWENL Y7 by 27, implemented in ECUs was basically developed by suppliers,
%ZIKE/JC:'& 754 Y Chf XN TV, %@lﬁjg 122 9% COOOVOVOVOVVOVOVOVOVOVVVOVOVOVOVGVOVVOOVOVOOGOOOOOOO
20
EH T4 T TR E RSO E Db oT, — i, HE 1 50150 MLOC
100 —
T ZELT L =72 BTRIEDL V7 b
7T hEOT, MEREREIT> Tz, LML, V7 b
v TIREICRRA) R SRS WTI Y=T T
Z. V7 b2 T OHBREZDSHIBICE S, ERICED R
FHTHHM L CAEAD L L. RELTREY 5L .
THHEELEEL, '90s 2001 2010 2015 2020
N . L _— 1= Started activities for software
DL BREERS, YT IOV T vy T ! quality assurance

HEHYBT DY T by 2 THM R RO M T - A2 RS -1 E#HECU LYK
Fig.1 Trend of automotive ECUs

35 MLOC,

'S
(=]

80

[
o

60

T
1N
S

40

Number of ECUs

20

o
o o
Software volume

* 7 b = 7B Software Engineering Department

H ZE ¥ #R No.84 (2019-3) 32

Activities to Improve Software Quality through Supplier Management

'@‘Z):kblﬁ‘of:o

2. VIR IT7mEEEOFE

V72T OMBEEEYIT) 2OIlE, BExoTikE
EFT VI D Do BWAEFHEIIRNELS V7 v T7H
fii” &L VTN THBETOEAT G55,
FZIHL TR, REOBWY 7MY 2T EEBT A0
2. EO L) BHEMEHCTCHEL T2 2R T 5,
—H. BETIE, BEORWY T Y o7 E KGRI B %
T 57202, BEERDFIEPED LN TS0, T8
D HNTFNEM) IZHEDPITON TV L 05 HRT %

21 VIR I7HRETITOCRADEBENTDEE

2001 4F 245, SKETIZCMM (Capability Maturity Model)
DN —HHET L, CMMI (Capability Maturity Model
Integration) (XI2) IZBATT 254 I 7 ThHolze T,
M TIESPICE (Software Process Improvement and
Capability Determination) & IF-1£41 % 1SO #4% (1SO15504)
OVERDATON T W2 A I v 7 ThdHoTze £2T H
FETIEFEICCMM CTEFK S NTNEZ 2 #Z 12 L, SPICE il
EOBXLEE L OO, BV 7 by 2 7T CHEHELRHE %
HEL, BAHEBE L L CER L, EEALRHEAIZ, CMM
DLRVIZESDNFITEIRL 720 FIRIE, "EORKZE
e IE" FHEWNZIEE TH S, CMM T, "
FERFIE" XL N5 E LTEFRESN TS, Ll "H
DIFHEFEH & FFER IR X R 7T A VIR EEZL
TWENETHY), BEEHB L L TR TIASL R WIHE
Thbo HBECMM LIV 5IEA ¥ RO—EDOMED A
BAS L2 T HARTHIUR L7 B3R I3 ETH 72, L
N BELZEH THIUIBREANAE L L TERT LR
ETHH, BEAHBEE L GREL,

but quality levels varied greatly from one supplier to
another. Engineers at Nissan responsible for individual
parts worked to confirm the quality of both the electronic
circuits and software. However, because software is not
visible to the eye, engineers without any experience in
developing software could not judge the performance of
the software received. When the software was actually
evaluated in test vehicles, defects were revealed that also
led to situations where large rework was needed.

That was the background behind the start of a team
specialized in software engineering that was made
responsible for conducting quality audits of software from
suppliers.

2. Methods of Software Quality Audits

In order to conduct software quality audits, it was
first necessary to define the audit methods. Audit methods
can be broadly divided into those concerning software
technologies and those concerning software development
processes. The former methods confirm what technologies
were used to develop the software in order to obtain high
levels of software quality. The latter methods examine
whether procedures have been defined that are needed to
continuously develop high-quality software and whether
development activities are actually carried out according
to the established procedures.

2.1 Definition of the details of software development
process audits

Development of the Capability Maturity Model
(CMM) was completed in the U.S. around that time in
2001 and a transition was being made to the Capability
Maturity Model Integration (CMMI) (Fig. 2). In Europe,
at that time the ISO 15504 international standard, which
is also known as Software Process Improvement and
Capability Determination (SPICE), was being created.
Accordingly, Nissan selected key items concerning onboard
software and defined them as audit items, mainly in
reference to the details defined in the CMM and also

GO0V VVVVVVVVVVOVVVVVOVVOVOVOVOVVOVVOVVVOVVVOVVVVVVVVVVVVOVVVVOVOVVOVVVOVOVOVOVOVOVOOOOOOOOO

o Practice capability levels

Process area

maturity levels) wE EE =
Ecuts R Define Process Project management Support
" HEHEL~<nl
3 Initis] | ity level 1 - - - - B -
EfER REQW Bl LS (MA
i Measurement and analysis
- - Fu ¥y MtERE PP) FoeR LRAENORKHRIE PPQA
5 M. a WD EL L2 (BREnR) Project planning Process and product quality assurance
lanage
2 Ability level 2 (Managed) {I‘/:);‘?U YR O AL ILSTERESNh S ||Fr¥ =2 oL (PMC) WEER (CM
Project ontrol ¢
The engineering process is defined as Level 3
) HigFFBEEW (SAM)
V. el Supplier B
ERMAE RD) | BES0LAZE OPD | g p50y vesm aPM) REAFLWE DAR)
‘I“:‘l:e;‘"‘f 0'3’“::;:;)‘5:‘“55 Integrated project management | Decision analysis and resolution
IR (TS) E*T?t;‘!a &R U2y ER (RSKM)
Technical solution | OrERnizational process Risk management
HEH ML ~3 (EBEhi) i
3 Defined

Ability level 3 (Defined) BEHRE (PD

Product integration

HE L -=Y (OT) =
Organizational training

5 MR (VAL)
Validation

#IE (VER)
Verification

' [

BRUBLEL<ALSTERSNS
Recurrence prevention is defined at level 5

RS EL L3 (EBThi)

i Quantitatively
Ability level 3 (Defined)

managed

i F o+ 2EH (OPP)

Organizational process

FBHSuY =P 1 ER (QPM)Y

Quantitative project management

R

~J

5| Optimiz A EL<A3 (FRINI) _
i Ability level 3(Defined)

HBXWER (OPM)
Organizational performance|
management

FE S LR (CAR)

Causal analysis and resolution

X-2 CMMIEAELANIVRITOERESE
Fig.2 Process areas by CMMI maturity level

33 NISSAN TECHNICAL REVIEW No. 84 (2019—3)

VIR I 7RERHEDHDY TS A VEEEH

—J7, BRI,) —Do0EELEAHEATH -
720 BEIHRA =7 OFLRAFREROFMH S OL)V, ¥
ATLCENVELR L, YT IAXYOREN#EEL, LER
HHOARERL TWAHEYATLALHNE, 1ZIZTTO7 T2
WCEBRTELLNVOLHEERL TCVDLIVATLALD
Do HEEE LTHEZENTWVAELDIZ. BT TF14 VI
L TH OV, EEICHEELTLHHILENH LD, —
HT HBEE LTERSN TV RWESIZOWTH, HE)
HA—=DE LTIV 794 YOFMRRINEZI®L, B
HOBRENNTNEIZ R > TR WD RIS BT
Wb BETFT T4 YoZid, FHFIRRA ST
LS 25U, ZFNDAHIEHICER L TLWw &
ZHETTIAXbHolze £ T, BAEH X, "EXR
HEROWHEDOEE" . "ERARDO AR IOV TO
GEICMA. ERARRICER STV R WNEDTH
DEXE—FHLTWLEIEDAE" IZOWVWTH, ERTS
ozl

22 VI BRDI7EMOEENEDER

BV 7 by 27id, Wb ARV T 2T
EMEENAFEHDOY 7 v 27 THY,)T IVY A LiEEE
PEELZHHTH L, B, VU7V A7 Tl 42
CIWNEETH B2, TIVF Y AT REEIRIRE NS 5,
BRI E S N7z5 27 O TOIEER I T 5E
EAAOME (M3 (a) . ETNEFORE (143 (b))
HEMIEL SRR - EEESNA TV ARWVWE, V7 by 2T
ELLEMEL RV SNHDY T M T2T7DT —F 77
F X RETNFEICOWT, BERIEA 2 EHR L7

3. BEEODOXIE

EAIIEARIIC, 7T A Y ORBISIZER L Tiro
720 AR IHTEESKT T4 L9120, BEAHHE 2 #
EL7e AT, ¥ 794Vl Rensy 7 b
77 OE, B TO AOME RSV E, F0
) ZCTFIRIE > CTHEERZITo 72 BERIZ. 774 YD
FEHSTITbN b 720, ABEAEZRTGEHIZ. £
DY TRRENDLDOPEBTH Do EBRIZ, LERIEE

COVOPOOVOOOOPOOVOOPOOOOOOGOOOOCOOOOCOO

Multiple set variable: MSV Z variable: ZV
O O Variable P Variable Q
\\4 W, R H
; . Variable Zi— N
_Global variables L Variable set one cycle before J
a) 2 22 WO ALK (b) FATNESF DIRE
HBERAY DHERARZA IV TICE D, BHO L e 2 — VAR VAR OB ZOME B 505,

EDINT L ERIET B
(a) Variables shared between tasks

D N 2 & 2 BRGES S

(b) Verification of execution order

To verify that there is no overwriting of variables To verify that there are no issues when Module-A
data when writing data from all tasks. references the value of Z defined in previous
schedule cycle.

M-3 FP—FTFIF viRstEREB DA
Fig. 3 Examples of assessment points in architecture design

taking into account the moves toward the establishment of
SPICE. The key items were selected without sticking to the
CMM maturity levels. For example, identifying the true
cause of a problem and preventing recurrence is a typical
item. In the CMM, recurrence prevention is defined at level
5. However, identifying the true cause and preventing
recurrence is an item that we have traditionally strongly
required of suppliers and is something that must be included
in the audit items. At that time, only some companies in
India had attained CMM level 5; there were no companies
in Japan that had reached that level. However, if an item
is necessary, it should naturally be required as an audit
item, and so this item was selected for quality audits.
Requirements elicitation is still another key audit
item. The level of detail defined in specifications required
by a vehicle manufacturer differs depending on the system.
There are some systems for which only the requisite items
are defined out of respect for a supplier’s capabilities.
There are other systems for which the specifications are
defined almost to the extent that they can be converted into
a program. Things that are defined as specifications must
be clearly understood by the supplier and be implemented
correctly. On the other hand, for things that are not defined
as specifications, the vehicle manufacturer must understand
the contents of the supplier’s detailed design and confirm
that nothing deviates from the former’s intention. At that
time in 2001, there were some suppliers who thought that
they only had to observe what was written in the specification
documents and that other things could be defined as they
wished. Therefore, it was decided to include the following
among the audit items for confirmation: supplier agrees with
the contents of the required specifications; supplier agrees
with the ambiguous points in the required specifications; in
addition, supplier agrees that anything not described in the
required specifications is in accord with Nissan’s intention.

2.2 Definition of audit details concerning software
technologies

Onboard software is a type of software referred to
as embedded software for which real-time design is a critical
aspect. Naturally, a multi-task structure is selected because
it is difficult to execute a single-task design. The software
must not have any issues concerning the overwriting of
common variables divided among several tasks (Fig. 3(a))
or the order of execution (Fig. 3(b)). Such things must be
correctly designed and implemented, otherwise the software
cannot operate properly. Audit items were thus defined
regarding such details of the software architecture design.

3. Implementation of Audits

Audits were basically conducted by going to a
supplier’s software development center and making
evaluations. Audit items were selected so that audits could
be completed in one day as much as possible. An audit
began with the supplier giving an overview of the software
concerned and of the development process. On that basis, the
audit was conducted according to the specified procedure.

H ZE ¥ #R No.84 (2019-3) 34

Activities to Improve Software Quality through Supplier Management

PATHON TN DD, ZONFILEYTH 2 0% MR L 72,

HFTIAXIE, BT LR L LHET N> T\ 5D
DOV TH Y, WHT LA IZEREL 720 720 FL
BNTH, WS EICEL LB E N> T HHED
Hbo ZOOH, [FLHEGMTHHABWASERUL, Hl4
WA T 720

I/, FETSF—TarE0—HD YT My LT T,
TR T IAVICHEO—HELRILL TV D, ZD720,
TR TITAXICONThH, BEEEITo72,

4. FESHRHEROHE

HEJE X —H 5 754 VICBFEL T a0, B
DARBERBER Y0 b THE, —H. ¥ 7TI14
YHRENDTHECTELDIE, V7 My o TESEHE (V—
Ad— Nt &) L. 74 Y AROBMIBEAREESHT
Hbo YTIAXELTIE, HHOEFHET LT AT
TR ZITV, AEEPRNELRDEHIIENLZH 2
f‘V7Fﬁz7%§@$%—ﬁhmlbtiff%éo
L2L, T 0bb3, V7 b2 T7OAREED
Df%é#@b#%&woEﬁﬁx—ﬁimkéﬂt/7
Py 7 EHWT, YATFATANBLOHEF A L F1T
Vo COHTHRELVPONEGVPMBENIEDDH 5o
ZIT ERTF LB TIAX N0V T by L TS
HEOEHRE ., EBEOAHORBARLEGKL Y., Bf~D
VI TABRARBEEER TSI L E L, THE
ABERB L OB EREONEN R T, »OAEAT
HO/PNSVTTITAXIE, RDEREZLERSTBY. #
BELCTEMERMETE TR LTI & L

5. Y754 VEEREEDOEA

FREOAET, BEEGEIZITo7. TOHR, LTO
FDHIREC 72 5 720

BWH 7547 Tid, 70v L b e &t
TbNTBY., HEFETHLIAEETERL K, —
T HEYVEFESA VT TIA4 YL, SRSB4
THhH ., AEATREEITEV,

L2aL, HEJEX =S LTE, V7 M7 2 78R D
FORIFTHEVWYTIAXYDY TP T 2T THoThH, &

WL E L CEIAEAEZBREAL T, BIFRMEOR G E L
TﬁwV%ﬁﬂiéﬁﬁﬁﬁéo_wﬁ%\§E$x~ﬁ
MAERZHEAL, AEEEZITDR LTI LS v,
DFN. BT IAVEERNCY T by o TEAE T FERL
G, MAMBEIIRETE 2V EPHELE 2o 72,
2001 4F 4 g, 7T A VEERNI T T A VB O i
NEZHERT HEE I TbIN TV, B8Ny 7
Ve, B SEOKE, AETHOME 70 A%

35 NISSAN TECHNICAL REVIEW No. 84 (2019—3)

Because an audit was conducted at a supplier’s software
development center, documents explaining the development
details were usually presented at that time. It was confirmed
whether the necessary work was actually being done and
whether the details were appropriate or not.

Suppliers generally adopt a different development
approach for each product, so audits were conducted
separately for individual products. Even for the same
product, there were times when different development
approaches were taken depending on the development
center. In such cases, separate audits were conducted for the
same product if there were different development centers
involved.

Moreover, for some software like that for
navigation systems, part of the development work may be
entrusted to secondary suppliers. Consequently, audits of
secondary suppliers were also conducted.

4. Measurement of Defect Outflow Rate

One thing that a vehicle manufacturer expects
of suppliers is a zero outflow rate of defects to the
manufacturer. Meanwhile, what suppliers can measure by
themselves is the scale of the software (number of source
code lines, etc.) being developed and the number of defects
a supplier detects in-house. It is assumed that suppliers
make every effort to minimize defects by carrying out
the necessary activities in processes they themselves
have defined before delivering their software to a vehicle
manufacturer. However, despite their efforts, no one
knows for sure if the software is defect-free. The software
delivered to the vehicle manufacturer is used to conduct
system tests and in-vehicle tests. Unfortunately, there are
times when defects are detected in such tests. Accordingly,
the audit team decided to calculate the rate of software
defect outflow to the vehicle manufacturer based on
information received from the supplier concerning the
scale of the developed software and the actual number of
defects passed on to the manufacturer. Further, suppliers
showing good results in process and engineering audits
and also having a low defect outflow rate were judged as
having done what they were supposed to do and that high
quality was attained as a result.

5. Implementation of Pre-supplier Selection Audits

As a result of carrying out audit activities
according to the procedures explained above, the following
points became clear.

Good suppliers were both applying processes
and conducting technical investigations appropriately. As
an index of the results, they showed a low rate of defect
outflow. In contrast, suppliers that were not so good had
high rates of defect outflow because they were not doing
these things sufficiently.

However, a vehicle manufacturer is obligated
to ship its vehicles as products of excellent quality by
removing any defects from the final product even for the
software of suppliers whose software quality is not so

VIR I 7RERHEDHDY TS A VEEEH

EIZOVWTOMRETHY, BIZRZ WY 7 b7 271D
WL, fEREDITE T Wi o Tz,

FIT, VT NI 2TICOWTh, 7TV EERE
HEEEATHLIEE LI 774 V@EEmMEAEAD. Lid
DEEA LRI 7T A4 VOB ZEEISIZFHR L THREL
EEAEHE SRR F CIEECITo 70 BEAERADVE
HFTHRWITIAXIZoWTIE, BEARTETLH, KIE
HEGEENE L V) S & TEE & L,

6. BEEEENOMR

INLOEREHZBLUCT, Y7794 YD V7 by
THMT L. VT M THETOEA ORTTEES
FVYTL, BT ITAXYOUEEREM - AR 2 T-oT
&l FORER, FTIAYORBEREINITRIECH L,
T ITAXORNEETHHED 2001 4E L FFI2H~_T1,740
FCEMT A ENTE,

.5 b b [

V7 by TR T O Ao ERSE #E L 2001 4F DL,
BRT v TT—=hENTETWSL, T LT, Fx
DEENBELWLEZMZ TV, 72212, Automotive
SPICEY " HBH¥ER & L TEMINTETTBD,
Automotive SPICE D 70+ ZB K 2 BINL TWwb, 4%
BWOHDNRANT S 7 54 AFBATHZ LT, BE
WEWHREOYV T b 27, B VY2 TEL L
IS MFERIIZE) AT > TV & 72w,

8. & £ X M

1) Automotive SPICE+& — 4 X — 3 http//www.
automotivespice.com/ (ZHEH : 201849 H 26 H).

WE&_ Author(s)ll

ZEI TR)

Naoki Arisaki

good. Consequently, the vehicle manufacturer has to invest
resources in order to implement measures against software
defects. In short, it became evident that this problem could
not be fundamentally resolved without conducting software
audits before selecting suppliers. At that time in 2001, the
technical capabilities of supplier candidates were confirmed
before suppliers were selected. Such confirmation work was
mainly done on the basis of product samples and checks of
a company’s overall product development system and quality
assurance processes at its manufacturing plants, among
other things. However, such confirmation was not possible
for software that is not visible to the eye.

Therefore, it was decided to implement pre-
supplier selection audits for software as well. Such audits
are conducted in the same manner as those explained
above by going to the supplier’s software development
center where the evaluations are done and by using the
same audit items and evaluation indices as much as
possible. Supplier candidates showing poor results are
either not selected or are selected on the condition that
they make major improvements.

6. Results of Audit Activities

These audit activities have enabled us to monitor
the software technologies and software development
processes of suppliers as well as to encourage and support
their improvement efforts. As a result, suppliers’ software
development capabilities have been substantially improved
and their rate of defect outflow has been reduced to 1/40
of the level in 2001.

7. Conclusion

International standards for software development
processes have been successively updated since 2001, and
we have also made improvements to our audit details
accordingly. For example, Automotive SPICE"Y has been
implemented in the automotive industry, and we have
added process requirements based on it. We will continue
our efforts to provide customers with excellent quality
software and vehicles through the implementation of best
practices around the world in the years ahead.

8. References

1) Automotive SPICE website: http://www.automotivespice.
com/ (as of September 26, 2018).

i i -
i T

A =

Yukiteru Yamamoto

H ZE ¥ #R No.84 (2019-3) 36

¥%6E Special Feature '

EHY 7 MU I THECH I SMlEN, VT I U—-vaY (Cl) O8A

Application of Continuous Integration to Automotive Software Development

;toE & E
Yoshinobu Ito

w 7 VA, HENEGEC T8 27 7 4 FEMMOABEICE Y, BHiky 7 by =2 7o ko—%%
o TWwb, TV ATLADERILLME->T, V7 b7 27 ORBEHEHIR A SELZLDIZE)DDH
bo ZOXI RIGEHIIFEZ, V7 by 2 TEHESCHEEOEMLE 25 L. AWIAZFERT L, 2%
fRRS 2L, VT by 7 ONER RSO, W Tid T A MERICIER S 2 BEERREET
HbHEEZONL, KEETIE. JEiA v 727 L =23y (CD) %flio7-MERRAORY) AL, FOH
W7 by THENOBEHEFICOWTHEMNT 5.

Summary Over the past few years, with the advent of autonomous driving and connected car
technology, the scale of automotive software has been increasing steadily. This, coupled with
diversification of systems, is making software development activities more and more complex. This
situation complicates software management and validation, which in turn can cause human error.
Solving this problem is viewed as being crucial because it is directly related to quality improvement
and reduction of software development manpower and cost. This article describes ways to solve
this problem using continuous integration and presents examples of its application to automotive
software development.

Key words : Computer Application, software development, software validation, continuous

integration, version control system, git, cloud, agile

1. [U & [

b HEABEY [y oA r7) Y= MEEY
T4 OWYMAZHEAMAL TV D EHI2, ESHBIHOE
B ABEL 2SI L TV %0 FAUSHEV, HEJEICEE
WbV 7 by 7T OBBIIRENIZHERL TS, B
RIIZIE, 20004FICEH AT CTh o 2B Y 7 87 27D
V= AT — FOTEUZ2018EBIE, 1EITICE > T E
SHONTEBY., 2025F T EITICHET 2 L FH ST
Wn U, F72, V—Ra— FIZEELRLEREEINC N7 1ME
EEZHET))—ASNDD, TOETOREBRIEL /N—
TariwoMaetHWTERTLIUNENH DY, 0L
I WREY 7 vy 2T R, HREZEOTEEL TS
Z LW ESOHBHEEFRIROSN TV 5,

WIZ, VAT LABIMICHER L Th b, BT, [HE)
WA] & —FTHEONL I LDL VY AT A%, FE
A RIEREDEE TN SL-> T 5, #iEHFH ORI % 7 5
Intelligent Emergency Brake X* Intelligent Cruise
Control, H J7 7] @ Lane Departure Prevention 7z & T &
5o INOHEEREOMAS DL, BRI #IC L 5T

1. Introduction

Vehicle electrification and incorporation of
intelligence in vehicles have been accelerating in recent
years, as typified by our efforts to promote Nissan
Intelligent Mobility. These trends have dramatically
increased the scale of automotive embedded software.
Specifically, it is reported that the number of lines of
onboard source code, which was one million lines in 2000,
reached 100 million lines in 2018. It is forecast to reach 600
million lines by 2025.Y Source code is released after
repeated addition of functions and debugging, and it is
necessary to manage the entire growth process based on
the concept of version.? Accordingly, the automotive
industry in recent years has had to manage this enormous
volume of software, including successive generations.

Let us now shift our focus to onboard systems. For
example, systems that are often talked about in simple
terms as autonomous driving technologies are actually
based on an aggregation of many different features. These
include Intelligent Emergency Braking and Intelligent
Cruise Control that help to manage a vehicle’s longitudinal
movement and Lane Departure Prevention that assists in
controlling lateral movement. The combinations of these

* 7 b = 7B Software Engineering Department

37 NISSAN TECHNICAL REVIEW No. 84 (2019—3)

BHY I b I VRECBIIDMENT T IL—T a3y (C) OEA

R DYE0H 5. MUIRTERIZ. & 54T i35
HEA, B. CEHMAGHLETY AT LEMEL, Jlotn
HICIZHEBEA, DL EZ AR DETWVD, ZD70,
EHEBER I (22 BlA v/ Lb—varyl, VAT
LAELTEFRICEMES LI EABOTEHEHETH S,

INSIE, VT MY TEBERHREEOBEMILE D725
L. NI ARFERLT 5. TNERRTLIEN, VT
7 =7 OSEIN ER BB O, O Tida 2 IR
WCEAET H2EELRRETHLLEZ HND,

2. > I0—rar (C) &

CO[VI NI TOMBENBITLV 7 My =T
PR MERE OB ML) L) EREICH LT DFo=
DOMEERET %o
BRI TR, MREEOTEETELZ L
o KFkfETHlEE (22) RA VT TL—=Yavl, YA

TALELTCIEFEET 2MEEZ ISR

CNHMEIIBITAY) a—2ark LT, FAIECI
DEREHEDT WD, ClEI, JRFRICIE, H—% & 21t
TAMBEDFERZFRL VT T2 TIZ74—FNw oL
20h, FIZEL CEMET 2ME R o720 Ol A R E
OBEEERL, FEFEIZIE, ENVFRT A A VAR
Ta v R HEIN OMBRICHET L T 2 L B
T 5o Ml CLOEIRRHMITY = TRBHEHIFEDL L
L. DB, REETIZHERKY 7 by 2 7HZEICBITACLIC

C/CH+ B E TRl &Ny — 23— FEF TR L.
WHhWLETFTIAR—ZABERBICBIILAETLVLETNL TV
LWV ETHD, WTIUIHIARZIIEDS R,

21 N—=YavEEIYATLA

T3 HEOEREFERLS V7 by = 7IZHU) Mt
EV) FIZDOWTHRD P4, HEEHIZRT A EEDOZR
R E I L T, ZUoTY 7 by 27
LAY K LR Z B T 2 e KO N5, Bl
R R e e e e e e e e

System
for US rr}arket

System
for Japanese market

Feature

// A \\\ /,
,’l \\‘ ,’l \\‘
/ Inte- N b !
! gration \: '/
\ Feature Feature) \ Feature
B . C / N D

-1 YRFT LB
Fig.1 Examples of system structure

features sometimes differ depending on the vehicle model
and the destination market. As shown in Fig. 1, features
A, B and C are combined to create a system for a certain
market, while features A, D and E are combined for a
different market. Consequently, it is imperative to integrate
the features without any variance and to ensure that the
entire resultant system operates properly.

This complicates the work of managing and
validating the software involved, which can give rise to
human error. Resolving this critical issue can contribute
directly to improving software quality and shortening
development lead time, and, in turn, to reducing costs.

2. Overview of Continuous Integration (CI)

The following two issues are involved in this
problem of the growing complexity of software management
and validation in software development activities.

* Management of voluminous software, include successive
generations

* Maintaining quality at all times when integrating
functions without any variance so as to ensure the system
operates properly

We are proceeding with the application of CI as a
solution to these issues. In a broad sense, CI refers to the
methods, practices and philosophy for maintaining quality
to ensure proper system operation while promptly feeding
back customers’ constantly changing requirements to the
software. In a narrow sense, CI refers to the automated
and continuous execution of activities to build, test and
inspect software. Detailed explanations of the definition
and techniques of CI can be found on the Internet and in
reference books. The following sections of this article will
focus on CI in automotive software development. One note
is added here that the object of management is not just the
source code written in C, C++ or some other languages,
but rather it also includes the models used in what is called
model-based development. In any case, the essence is the
same.

2.1 Version control system

We will first delve into the issue of promptly
incorporating customers’ requirements into software.
Customers’ needs and wants regarding vehicles change
with the passing of time. Accordingly, it is necessary to
repeatedly add functions to the software to reflect such
changes. For example, cruise control that keeps the vehicle
speed at a certain desired level without operating the
accelerator pedal has gradually evolved into Intelligent
Cruise Control with the addition of a function for following
a preceding vehicle. When a need arises to add a new function
to the source code or model in this way, the following
approach is generally taken. First, the original model is
reproduced and the replicated model is modified. This
growth process is illustrated in Fig. 2. It is seen that when
the original model is modified, the trunk (main line)
representing the growth process of the model branches.
The reason for the branching of the trunk is to avoid

H ZE ¥ #R No.84 (2019-3) 38

Application of Continuous Integration to Automotive Software Development

X, TRV RTVEFERGTAHZ LR, HDH—EDR
J& % #4534 5 Cruise ControllZ. [i i OB Z Bt 5
Intelligent Cruise Control™~& KFHIZHEL L TE /e ZD
Iz, HitfeE Yy — A — FREFIVIEINT A E W
TTBHBRET DG, —BINOKRDO L) 2 Fhxrlb, F
T IOETNEBERT L, T LTHERBELZET VISR L
TEREZMA T THIZK2ORICEHTE L, HR
L7727 IICH L TEBEZINZ 2R T, ET VOB
EEHTLIHI0 (75 0 FEIER) LTWBEDHNHE
THN S, §& 0l &85 BiL, RICH LuwikgeosE
BN D D - oA TH, TTOWRENBEZ RITS %
WEIIZT 7O THL, £9)T5HI LT, FikrEOR%
ZELARERE L ML X THED B T ENTE S, Tk
BIZSICHDORDBFETH). 7T v FOEBKII N Dbk
FSITVDY A, ST TIHEAD L v, i s87-F
FINZ LB R 2 BN L 725, REMIZIZTTOE 7L
NFEE (R=VERER) $AHZEICR L, ZOBICETIV
E, 77T UMY BRENGAOLEEL TV,
FOBETH->ThH, ECOROERFRELBHTES X
T BUENH D, TIUIN—V g VEHEY AT ATE
Hehb, COVATLAOBPITT, Fitkggxr v 7 b o =
TV B AATE, BOWERRN—T 3 v e EOE
BRI NI-FEFREZHED L LD REE oD RiBT
L, ClEEBRTLVATLRN=Ya VEHY AT A
EHBELTEIET S L) IHES NS, Lo TCIREA
T2 LN, —DOHOMERINOLDBLDTH 5,

CIZHET RS EFTHEEHHT 720080 T
HY. ERBETRBABEPRO N0 E) IXESATIE R
Vo Fo, BETFNVEBBEL CHESIESED EEND,
PERALEL & L CEBICET VOB IN L A, 208
ENDLPEN=Va VEBVATALESL, vy HLE
ExfHromacsls

2.2 BEMD DIfGEHIES
WIZ [HEMY] BLO THEH] ICOWTHD T %,
Bk 7 b2 7OREIE, M3D L) R TEZRDL, &

R R e e g

: Intelli,
Cruise Control Cruiso
—@, o

Time
Branch off Merge back
from trunk into trunk

o——0
0 1
Add function Add function
Forward vehicle Follow vehicle
detection ahead

M-2 EFILORKERE
Fig.2 Growth process of a model

39 NISSAN TECHNICAL REVIEW No. 84 (2019—3)

influencing the original function in the event that there is
a problem in the implementation of the new function.
Branching makes it possible to develop the new function
independently of the existing function. This leads to the
topic of distributed development. Several strategies have
been discussed for branching,® but we will not go into the
details here. After adding the necessary function to the
branched model, it is ultimately merged with the original
model. In this way, a model grows through a process of
repeated branching and merging. In every case, it is
necessary to be able to trace the entire modification
history of the trunk. This is accomplished by the version
control system. This system enables development to proceed
while maintaining management of the trunk configuration,
versions and other details, regardless of how many new
functions are incorporated in the software. As will be
explained later, the system that facilitates CI is constructed
such that it operates in tandem with the version control
system. Therefore, the application of CI leads to a solution
to the first issue mentioned earlier.

The example cited here is merely for the purpose
of explaining the concept. It is not definite whether this
process is adopted in actual development work. It was
mentioned above that the model is reproduced and branched,
but a proviso is added here that the internal processing
depends on the version control system as to whether the
model is actually reproduced or differences are managed.

2.2 Automated and continuous operations

Next, let us consider more closely the terms
automated and continuous. The development of automotive
software follows the process outlined in Fig. 3. Among
these operations, the following tests are conducted, for
example, in the validation phase.
(1) Unit tests, including coverage analysis
(2) Static analysis for checking modeling guidelines
(3) Auto code generation
(4) Static analysis for checking coding standards
(5) Integration tests, including coverage analysis

In cases where multiple tests are combined and
conducted as indicated here, automating this series of
operations is a rational approach. The reason is that it can
be expected to produce various benefits such as preventing

B R e e e g

Design Validate system Validate system
system (D-EIPF) (EIPF)
Define Validate SW Validate SW
requirements (MIL ECU, (HIL ECU)
Design Integrate and
architecture check full model
Implement SW Test SWC Test SWC
components (MIL SWC) (SIL SWC)
Nl

Auto code
SW components

Integrate SWC and
complete ECU coding

X-3 BEHYVI MO T7ORFEIE
Fig. 3 Development process of automotive software

BHY I b I VRECBIIDMENTTIL—T 3y (C) OFEA

DWW, WHE7 = — ATl FIZIZDTFOREE FERL T
5o

(1) HfEaEER (BN Doat)

(2) BT () T HA RIA v F 2y 7)

(3) A—ba—FIzAl—Tav

(4) BT (2—71 v 7T v)

(5) FHEEHER (AL DHEat)

COEI, BMENGRBOMA G DY EERT LY
G NS —EOEEL HENELT 200G TH S, 1
o, EERLOIIECEEEOR EE Vo 28R A
P CE 20 THbe T-HEITH L ATOREIREI)
FELL70F, Tt RTEZRSHEEY EIF/28 LT
b, FNHOMEEAMICLT LOBER T2 Tl i n
ITETHD, ZD/H, WHH LITETVEBIET S
JEIZ, —HOMEEEERT A EDTREICR D, 2% 1,
RIFEEZAMET 22 LT ENEEM % HRBERYICFEH
T&b, SNV ZOHOREDRIIZOHRH D T LIk
%o

— R, CIZEB T AT AEN—Ya V&MY
AT AN CEET A L) IR SN L, BHELRN
WFROBY TH D, T3, BHENTZETNDIN=T 3 v
BHYAT ATy 7u—Fahb b, ZOWHEHRDSCIY—
NIHEMEN S, CI—NEENEZNITELT, 5
L OHEM L TWie—_OMEEED HELA 7) 7k
. BHESNZET VISR L TERT 5. £ LT, MEEIS
R LA, COEITRT I —NERENT Y V=T
NELIHEM S BIER T (M4). ZoffAIZ L5
T, BIELZZETIVIIEEA 7 7L —2 a v &L, MEGE
N SN D Z LR WISIEWEIES 2 B AR
LDTHA o

CCEFTHREHETLLE, CIEIE, N—Va yEHYX
TAERMHA L. BREE &GRS TR —H/EEE Bk
L. TNEHBRICEBTELLICLAZIATLTH
Ly LRZDBIENTEDL, INDCIOERTH D,

3. HAFT MR

TIE, CIZBEATLIET, E) Vo R N RAD
BDTHH) e —OHIE, MEEL RN CIEREICERT
XLEBFTOND MEESBEEICE AN E A 512
&L MEERIDPFEE LR T, 228G E A MEL R
FTWEAICH Do HEMLT A1EELX A7) 7 b EIZRER
52 L THRIESIHUL S L, ERIHE I X S RWIEERE
EDMREL 72 B0

“oOHIEE, N ERELEORVEBE TR TE S L
IMTH D, HIRRBRE B, HERBRIZEIEDOE
ENET LIBIZEREINDLZ D%V, L L, —fkiY
WCTREPRIZGAIZONTETIVIZERALL T 720,

tasks from being overlooked and enhancing productivity.
Automating operations also brings secondary benefits. For
example, even if the frequency of carrying out the process
is increased, it is not necessarily directly related to the
workload. Therefore, it is possible to perform the series of
operations every day or every time a model is modified. In
other words, automating this process means it can be done
continuously without increasing the workload. This leads
to a solution to the second issue mentioned earlier.

A system that implements CI is generally
configured so that it operates in tandem with the version
control system. The flow can be explained simply as
follows. First, when an updated model is uploaded to the
version control system, the CI server is notified of that
information. That triggers the CI server to execute on
the updated model an automated script for a series of
validation exercises prepared in advance. In case the
validation ends in failure, the engineers involved are
notified directly of the failure locations and error details,
prompting them to fix the problems (Fig. 4). In this
system, every time a model is modified, it is integrated and
subjected to validation, thus constantly maintaining
quality for ensuring proper operation of the model.

In summarizing the foregoing explanation, CI can
be understood to be a system that enables some development
processes, including validation, to be automated and
performed continuously in tandem with the version control
system. The foregoing has been an overall picture of CI.

3. Expected Benefits

What benefits can be expected as a result of
applying CI? The first one is that work can be carried out
correctly without missing anything. The more an operation
extends over multiple tasks, the easier it is for something
to be left out and that tendency is apt to depend on the
individuals involved. Indicating the tasks to be automated
in a script makes them clear so that the work can be done
properly regardless of who does it.

A second benefit is that bugs can be detected at an
early stage in the development process. Unlike unit tests,
integrated tests are usually conducted after each functional
feature has been implemented. However, as processes
move downstream, the model is greatly enlarged, making
GOV VVVOOVOVVVVVOVOVOVOVOVOVOVOOOOOOOC

Upload
| |imodel

am—"
Developer

k Validation
Notify Instruct

update alidatio p A Moder
T tomat
a_gé SL‘?éﬂaﬁs E}
- validation
- — P
Return

Developer i i

Version | CI Server CI Serveru
l control system! (Master) (Slave)
T

Developer s

X-4 ClU—)\OEK
Fig.4 Cl server structure

H ZE ¥ #R No.84 (2019-3) 40

Application of Continuous Integration to Automotive Software Development

ZOGIEINTERBEATLMBESE T, b LY =T
PETNVEIBIET HEICHARBTEBETEL L) 12hh
B N ERIICSERTCELWMRENES . FRY) OF)
WREEMEDM . %5 N HEon L cEx s (11
5)0

Z=oHIZ, A v T L=y a r R AW A 2V TERT
LEZAIZL Y MDD, FIUL. BREVPTEEICEE SN
TOARVERTH-> THEBI S THERET 52 & T, B
DEEREEROZEE) - O WEEE FEHICHERTE S L0
HTHbe XXy THHoILETL, ZNDIEART LHH
WCHLEBIEZ 2 Z ESTE, 280 T0REHICE Tk
WCHIBLRTWVWET LD, TNHIET VY A0 LI
LB TETIES N TV D A5, ARE Il v,
BRTIEDED, CLET VXY A NVD—DDT I 754 A
ELTHMLENTZEDTH 5o

4. BEFEYV T MY T THENDER

ST, ZI2HiE, FADPCIZ EDXHIZHIRY 7 b
T THRENEHSEL) ELTWEA, L) DITHIED
COOREE REIE S R L HPI L7z

41 FARMEDOYV I DI 7EE

FFTE VI b7z 7OER] I2OWTThb, T
LdLERREL R T 2HE6. MBI O
TI3%<, BEOFEMICHIEL TEHTE L9127 5
CEDEF L, BIZIE ARSI L5 ARk 4 7 Bl
W EN DD, FNEFMET L2 4B 50k
RN OIFMNETH L, 22 THAIL, —DOREREL —
DOYRY M) TERL., FHEEPSHT LAY M) B
DOYVRY M) EBT L L) KTy 7 by = 7 2 EH
LTwa (M6), VRY M) Eid, 774V T4 L7 b
) RET DHITTHY . ENOLOEH, TIT TRV —
VOBELREFEL T —DDEEKRTH L, Fa—=v
TV T 587 X =% % CHEAEEA O & X, Fign
TV 7 OREOEHGEIZIO L) IHEERNSTE L, £

COOOCOOOOPOPOOVOOGOOOOOOGOOOOCOOOOOOO

Feature A {]] {
Feature B ‘ ‘ ' T

i i H ime
Feature C ‘

N

Integration /" \ a4
i/

validation 1

Integration bugs
can be detected
at an early stage

X-5 ClOHFITDMR
Fig.5 Expected benefits of Cl

41 NISSAN TECHNICAL REVIEW No. 84 (2019-3)

it that much more difficult to detect bugs. If an integrated
test could be conducted every time an engineer modifies
the model, it would increase the possibility of detecting
bugs earlier. That could be expected to reduce return work,
improve productivity and also enhance quality (Fig. 5).

A third benefit is that there would be hints for
carrying out integration in a shorter cycle. In other words,
it would be possible to confirm at an early stage whether
there is any discrepancy between customers’ requirements
and the actual system behavior. That could be done by
running the system even at a stage where all the functional
features have not been implemented yet. If a gap is detected,
it could be fixed and the system put on the right path
before the discrepancy gets any larger. It would also allow
flexibility for coping with sudden changes in customers’
requirements. This is sometimes talked about as agile
software development,? but we will not discuss it in detail
here. As a small digression, CI was established as one
practice of agile development.

4. Application to Automotive Software Development

This section will explain how we are endeavoring to
apply CI to the development of automotive software, especially
keeping in mind the two issues mentioned earlier.

4.1 Software management as a development
function

First, let us consider software management. In
developing a functional feature, it is desirable to make it
applicable to several models in common, rather than
limiting its use to just certain specific vehicle models.
For example, autonomous driving technologies will be
implemented on various vehicle models in the coming

B I I L I L T e e g

nin
parameter

] e ——-,
______ —

! 1
- !
Feature Feature :{/ Feature “ P
A B \ (S
N pd

: A e

Repository | e
1

Fig.6 Repository structure

BHY I b I VRECBIIDMENTTIL—T 3y (C) OFEA

T5HI LT, F7IEREEOBMR B IENEL2HEG T,
FNEEHLCHWRY)RY M) T E2EHITULL L, B
BOBRICERZHET E Vo 2 EEEMTH 5D
NEHERED) RIEEL BT OND,
—HTHBLRTNE RO 20w b Db, TIULITEHL
ToREREDS, TNHMATELCEMET 205 Lo T, 20
HREZ SR L T2 2 COHMIILT LbEET 5 LI1dR
SRVEWV) T ETHb, 0780, FEFEHEAKDMELIZM
AT, TN e L Tw D ZHEAHIAA TCORGELA
WRTHD, T)Vo/llFHEE CIT AT ATH AR ML
THITBLENDHLH, TIUIA—/S—< =T LB 24
J72ATERL T b, HIEZEHT LRI YIS
BWT, Gl S THIET ED/ZHEZILOE T IV
BT A=V EIEINS, FOYVRY M) BT LY RY
UL DFENEENETLVRI PIAT—=TFT LT L
A== =T Thsb (7). LT, ¥—TLA—73—
=V RETT BRI A T4 — b LIS
. EBICY =Y L TLVREIL L > TWRE 0 E) 1 aif
A ET AT L=V a rBOGERHEL T
5o

42 BIREHEEOBHE~DEA
Tt [ED X)) BMEE7 0 — %288 T, BSE L 72 HhE

FHFNHHA L THRE050] 122w T, 8% ATl
The TT. N=TVaryFHIATAITy TU—- RS
T2E'TIWEE DI A)T 47— ThsbMIL (Model In
the Loop) MEGEEICHNT B, T2 Tld, E7 VIR L CHAR
REERLE TN T HA FITA T =y 7 EOFHNT
RERML, REMICCEREDY — A3 — FNEEWT 5,
CCETCAREELLKIELLLAIL. ZOETIVEITTD
ETMANY =TT b, TDH, A== =V DOFH
FFEAD)RY NN =TV T 57200 MEEE L TSIL
(Software In the Loop) MFEZ T 5. &2 TlE, &
L7z —RAa—=FIRLCa—T1 v 7#{F =y
7 EOEIRITR. TTOETIVE DM I DS % LT
% Back to back it Bt # FEjiti 5 5. & L C. AUTOSAR

T I T L I L R e e e g

<
rjiﬁi—Q (] o>
| Vehicle
i repository Super-merge
Feature
repository Arge

>
Add function

®-7 R—)\—Y—IDELX
Fig. 7 Concept of super-merging

years. Developing them separately for each individual
model would be unproductive and inefficient. Therefore,
we manage software within a framework where one feature
is managed in one repository that can be referenced by the
repository of each vehicle model (Fig. 6). A repository is
where files and directories are recorded. It is a collection
that records histories of the modifications, branching
and merging they have undergone. The greater part of
functional logic can be managed in common in this way,
excluding values specific to certain vehicle models such as
tuning parameters. In this way, when a new feature is
added or a modification is made, only the repository where
it is managed needs to be updated. This avoids duplicative
management in which multiple places must be updated and
thus avoids work where tasks tend to be missed.

On the other hand, there are also points requiring
attention. For example, just because a feature operates
properly at the unit level does not necessarily mean it
will fit all vehicle models that reference the feature.
Consequently, in addition to validating the feature in unit
testing, it is essential to validate it when it is embedded
in each vehicle model that references the feature. It is
necessary to support that activity by means of the CI
system. This is managed by a practice we ourselves call
“super-merging”. This is different from merging the
changes developed along a branch back into the base
feature repository alone. Super-merging refers to merging
the changes into the repositories of all the vehicle models
that reference the feature repository (Fig. 7). Quality gates
are set up as checkpoints at the stage before merging and
super-merging are executed. The quality gates validate
whether the quality of the feature is actually suitable for
merging, which guarantees quality after integration.

4.2 Application of developed features to production
vehicles

Figure 8 is used here to explain the flow of the
validation process that newly developed features go
through before being applied to production vehicles. A
model uploaded to the version control system first
undergoes model-in-the-loop (MIL) validation, which is the
first quality gate. Here, the model is subjected to unit tests
and static analysis such as a modeling guideline check.

Finally, it is converted to source code in the C language. If
R R S e e e e e e e e e e e
Merge et

Quality Quality Quality
gate gate gate

MIL SIL PIL

Static
[Unit test

analysis
Model Static
;gi”,, analysis
Auto code
generation

Integration
test >

#include xx

void Rugnable_Ini0 {
| hand ‘

M-8 ¥Y—IER—N\—~Y—IDT70O—
Fig.8 Flow of merging and super-merging

H ZE ¥ #R No.84 (2019-3) 42

Application of Continuous Integration to Automotive Software Development

(Automotive Open System Architecture) DR IEFHETH 5
RTE (Run Time Environment) % BSW (Basic Software)
AN,)T INAF) T 7 ANVEERT S,
DINA F1) 7 74)% PIL (Processor In the Loop) #&iF
N, AR EERIT 5, IS0 7)T 47— 1
FEFIGEBAL THOTA—N— =V 2 FEHET L, D
CITEM SN2 —HOEEDOHNE CINA T5 14 » LI
S, ZOCINATIA4 0% FRLEREITT 52T, HA
IYVETHT v T U= T LET NG A OB TIER
BfETHZ ERIRL TV D, BBEDOL LD IZHi->THB
WS, CLZEREMER 2 BB FEATT A A D—D|TE X
3. T ANHARSAS T T4 0% EEIEAHFE NG
T5EV)HEENTIERD 2\,

5. 5 b b [C

CZET, VI MY 2T ORBEEEHICBITAY T MY
TEMCHEEOBMEALE . E OIS 72 CTORUY 1
FANZDOWTHIT LT & 720 WBITIFRANDRE % 7F o THi
BHLL D7z,

HEEZERICBWCTIEHEFETH A H 2O CIOFHA I,
VIR L TERTIEC/CDANESEE L T & 72, CDIdfk
BT IN)DOZETHY, ClEIRLZFET, €L
FRFZRETTIERL, V7 b2 7D)) —AETE
DTHRMLT 2 2 L2 E®T 5, HEIFEEFRIL IO S
&L T ARREDBINRASIED A ¥ —F v b ER#E LTIl
BilZHiml > T 2 BB A H B 2> Ok ACAE . 8
ENHZLESVIZOND, b HAAZTOERIZIIH
GREREDS BIZE A DIFFE D T TO RV, LA L, T4
T4 FH—OFRBICEVEINLH 70T R ANDE
R xinRe. AT (NTAIRE) & 7z A EhEiR S o 3%
W SICHEAT L L, 2O L) RS HBIEIZRO S
NLDIIVIRTH L, T7-Z1UL, Adaptive AUTOSAR.
777 BRI EOBEA T 7 < L TEBIIRETSH
5o ORI, VI 2T OMWELTHEEE RS
BREPA LA G DE, £ FRIE T LD, FROF
TSy Y =TI I TH 5o

RiZIZ, S TEFARLHICE., Higfko-o%
FELERRDLNE, RIEEONEZ —BEA TV FHIZTH
LAY

6. & £ X it

1) RFEHEA B RIS e (5 1) FA SR
http://www.meti.go.jp/committee/kenkyukai/seizou/
jidousha_shinjidai/001_haifuhtml (Z M H : 20184F 10
A2H).

2) 1S026262-8:Road vehicles -Functional safety - Part &

43 NISSAN TECHNICAL REVIEW No. 84 (2019—3)

the model reaches this point without any problems being
detected, it is then merged with the original model. It then
undergoes software-in-the-loop (SIL) validation before
being merged with the model-specific repository, i.e.,
super-merging. Here, the converted source code is subjected
to static analysis such as a coding standards check and
a back-to-back test to confirm any differences with the
output of the original model. After that, a binary file is
created by compiling and linking the run time environment
(RTE) and basic software (BSW), which are constituent
elements of the Automotive Open System Architecture
(AUTOSAR). The binary file is then subjected to processor-
in-the-loop (PIL) validation and an integration test. Super-
merging is done only after successfully passing through
these quality gates. The flow of the series of tasks executed
in this CI process is referred to as the CI pipeline. A well-
designed CI pipeline guarantees that the models engineers
upload on a daily basis will operate properly in each vehicle
model. To make sure there is no misunderstanding, it
will be noted that CI is nothing more than one system
for automatically executing routine tasks. It must not be
forgotten that human engineers are the ones who design
and implement the test items and CI pipeline.

5. Conclusion

The preceding sections have described how
software management and validation have become more
complex in software development activities and how CI is
being applied to resolve such complexities. Finally, we will
conclude with a discussion of the outlook for the future.

CI technology, which is a fresh approach in the
automotive industry, has already evolved to CI/CD in the
software industry, where CD stands for continuous delivery.
It is a method of extending CI and refers to automation
of the release of software in addition to build and test
activities. In the context of the automotive industry, it can
be rephrased as automatically and continuously streaming
and applying to vehicles already on the market new or
modified functions via the Internet. Naturally, it goes
without saying that various hurdles are standing in the
way of it becoming a reality. However, it is inevitable
that such a capability will be required of vehicles when
we consider the flexible accommodation of new businesses
created by the deployment of connected vehicles or the
implementation of autonomous driving technologies based
on artificial intelligence (AI). Moreover, it will be difficult
to achieve that capability without the use of technological
innovation represented by Adaptive AUTOSAR, cloud
computing and virtualization of hardware. As indicated
here, current trends have thrust upon engineers the
proposition of how to integrate, for future development,
such key technologies with vehicles that are being
transformed into a mass of software.

Finally, readers are kindly asked to note that, for
the sake of simplification, the examples and explanations
given in this article may include details different from
actual facts or things that are still not definite.

BHY I b I VRECBIIDMENTTIL—T 3y (C) OFEA

Supporting processes. https://www.iso.org/standard/
51364html (ZHiH : 20184E10 H2 H).

3) A successful Git branching model Vincent Driessen.
https://nvie.com/posts/a-successful-git-branching-
model/ (ZHH : 2018410 H2H).

4) Manifesto for Agile Software Development.
http://agilemanifesto.org/iso/en/manifestohtml (2 B
H 2018410 H2H).

6. References

1) METI: Strategy Meeting for the New Era of Automobiles
Handout at The first meeting, http://www.meti.go.jp/
committee/kenkyukai/seizou/jidousha_shinjidai/001_
haifu.html (as of October 2, 2018).

2) IS026262-8: Road vehicles —Functional safety — Part 8:
Supporting processes, https://www.iso.org/standard/
51364.html (as of October 2, 2018).

3) A successful Git branching model Vincent Driessen,
https://nvie.com/posts/a-successful-git-branching-model/
(as of October 2, 2018).

4) Manifesto for Agile Software Development, http://
agilemanifesto.org/iso/en/manifesto.html (as of October
2, 2018).

WE&_ Author(s)ll

;o & R
Yoshinobu Ito

H ZE ¥ #R No.84 (2019-3) 44

¥%6E Special Feature '

Vyoboz7 bo—=20€5

Software Training Center
A 3 BRI =T NN i

Yukiteru Yamamoto

Miwako Hasegawa Yuji Ono

% =

e, HEEZERIL, AEIC—EOREEWICHrEEDbN5, LT, ZOLEEDF—L

RLEMNE, VT N2 TENTH D, Lo T, HEIEA =728, V7 Ny 2 THTDOMERIZE
BrhoTwh, TR L20174E12H, HEHHERI LY D=7V 7 M7 2 TIHTLAFVT v T%
HEIZ, V7 b7 M=o 7y ¥ %%z, 22T, My OBENE. HEREICOVWT

WAL F22ZHEO D 5 O THNT o

Summary

It is said that the automotive industry is currently in a major transformation period that

occurs once every 100 years. The key technology behind this transformation is software. Therefore,
acquiring software development capabilities is an urgent task for every car manufacturer. Considering
this situation, Nissan opened the Software Training Center to train engineers who have no software
engineering skills. This article describe the training courses and training environment at the Software
Training Center and also feedback received from the trainees.

Key words : Computer Application, automotive electronics, software, training, model-base

development, computer

1. [U & [

HE, HEHEERIEHFEII-EOREREORIZH S
EEbNL, TIUTEBL, AERER, I8 771 Fh—
WREBE SN LM EASINL D THY, T
W, HEIHEOE VA AR EESRI), h— =TI
RESNLEDAZADPER LT EFEbNL T,

ZLT. INSOEEERT 2 LR O—253Y 7 b
TITHMTH L, VT My T H AL Tk, EEML.
HEhdifn, 242774 FA—%2EHTLILIETET, v
TN = T EMOEZMATH AR L TV D,

COROHEHBETIZ, V7 by T M-y s ®
YEERBBL, Bk 7 by o 7 RS T AL RO
YIUVZTOERER > TWA, BT, V7 T b
L—=y by s OEZ AT 5,

2. FERRELDIVIZT

H#EDYV 7 27 bL—= 7ty ¥ OREFSIL.
ARV 7 vy 2 T ICHT 2 HFROL nw =Tk
THIEE L7z, BUE, HEJHEICKNEL SNLEANIE, &
BUZABD DSV T MIY 7ML TV, ZHUISHIET 572

1. Introduction

The automotive industry is said to be undergoing
a profound transformation now that occurs once in 100
years. This is happening because of the introduction of
various new technologies as typified by electrification,
autonomous driving and vehicle connectivity, among others.
As a result, the nature of the automotive business is being
revolutionized and new businesses such as car sharing are
expected to become more prevalent in the coming years.

One of the fundamental technologies driving
this transformation is software. Without software,
electrification, autonomous driving and vehicle connectivity
would not be possible. The importance of software is
continually increasing every day.

For that reason, Nissan established the Software
Training Center to nurture engineers capable of developing
onboard software. This article presents an overview of
the Software Training Center.

2. Engineers Targeted for Training

The training courses at Nissan’s Software Training
Center are basically targeted at engineers who have little
knowledge of software. At present, the technologies required
by vehicles are shifting rapidly from mechanical disciplines
to software. In order to cope with this change, the training
courses can be taken without any prior knowledge of software.

* 7 b = 7B Software Engineering Department

45 NISSAN TECHNICAL REVIEW No. 84 (2019-3)

VIhDI7 -0tV

O, VT FT T OFEAROL WA =NV =
TTHoTh, VI N2 THMIEDF5ZENTESL
LT 5720, Tl ClCEAIHBENAEE L
720

3. BRBELBERELANIY

#1752 ECU (Electronic Control Unit) [AllJ DY 7 F 7 =
7 %, MATLAB % F\\ 72 BTV N— ABSEFHEZ HW T
BB TAHZ L%, HENEE L TER L. T, ZilfE
MENENHEEER O —IBOREREIZ D W T, EBILE
ME 2P BB TIVHE, BIET A M VAT AT A N ERATV,
BV T MY TERERTEL L)AL LR HIELA
V& L7,

4. BFNEHEEAE

VI N 2T ERASL VT EFERT HIIL72Y,
k% =ODAT v T4 72,
C ATV T VT My THME ~V T Ny 2T OBE
J5UEE O PR A~

V7 b7 7 ORIRAREOENEICE 5T, VT by
T LIRS D EDRMNDAT Y T b, <A
2% CPU (Central Processing Unit) Offik %2208, v
7 b 27 SCPU L TEIES A BT 52 LT,
V7 by 2 THARDRFERL A EGHEN ORERE 2E WS
%o MATHBJERIFY 7 MIAT K% CAN (Controller
Area Network). Sleep/Wake-up, WatchDogTimer 7 &
DOFERE. 15026262, Automotive SPICE 7 & o B HLZE 7
DOHIE - BEEIZOWTESR, BENLHEFENELERLITR
R
e AT v 72 ET VA= XS (MBD) ~MBD Y —)L
OFHLTO N A TETNOVER~

KOAT v T E, BV T b 2T &VELAFVOEE
THbo MBDY Tld, VAT ATEBHLLVEIEX (V7

B I I L I L e e g

-1 AFv 71 VYT OIT7OER
Table 1 Step 1: Software basics

Automotive embedded software basics

« In-vehicle communication

Software basics
+ Software overview
+ Software development process
+ Operating system « ECU sleep/wake-up
Microcontroller basics + Fail-safe
« Watchdog timer

+ Memory management

« Diagnostic overview

+ Microcontroller basics
+ Flowchart

+ CPU + AUTOSAR overview
+ Operator and addressing Automotive software development process
+ 1/0 port + Software development model: V-cycle

+ A/D conversion

+ PWM timer

+ Exception handling
C programing language

+ Basic C grammar

+ Software design
+ Software testing
Automotive software standards

+ Software standards overview
+ Automotive SPICE overview
+ ISO 26262 overview

+ MISRA overview

+ MAAB overview

+ Array and pointer

+ Structure and union

+ Compiler

This policy enables even mechanical engineers who have
limited knowledge of software to acquire skills in software
engineering.

3. Training Content and Target Level

The training content is defined as to enable
trainees to develop a software program for an electronic
control unit (ECU) for controlling a vehicle system using the
model-based development approach and MATLAB. Each
trainee is given the responsibility for a certain function
of an autonomous driving system. The target level is to be
able to complete a working software program, beginning
from an investigation of the actual specifications through
model development, unit testing and system testing.

4. Specific Training Content

The nurturing of engineers capable of handling
software is divided into three overall steps.

e Step 1: Software basics—Acquiring an understanding of
the principles of how software programs operate

The first step for engineers who have no
prerequisite knowledge of software is to understand
what software is. Here, they learn the structure of a
microcontroller and a central processing unit (CPU) and
gain an understanding of how software runs on a CPU. In
this way, they acquire the fundamental capabilities for
developing software specifications and analyzing problems
in software programs. In addition, they also study the
functions indispensable to automotive software such as
the Controller Area Network (CAN), sleep/wake-up,
watchdog timer and others as well as the specifications
and standards of the automotive industry, including ISO

26262, Automotive SPICE and others. The specific details
of the training courses are shown in Table 1.

* Step 2: Model-based development (MBD)—Mastery of
MBD tools and creation of a prototype model

The next step is to acquire the skills for creating a
working software program. In the MBD? approach, the
desired system functionality (software specifications) is
described in a model and the operation of the model is
verified (specifications validation). Here, trainees learn
the related technologies, including control theory such
as proportional-integral-differential (PID) control and
feedback control, how to operate MATLAB, Simulink,

Stateflow and other modeling tools, and rapid prototyping
techniques for evaluating the created model on an actual
vehicle. The specific details of the training courses are
shown in Table 2.

* Step 3: Software development for mass production—
Acquiring an understanding of the mass production
process and actual practice

In developing software for implementation on a
production vehicle, it is not enough just to create a model
and conduct simulations and evaluations. It is also necessary
to have the techniques for maintaining quality in terms of
source code readability, reusability and reproducibility.

Here, trainees acquire the skills needed for developing

H ZE ¥ #R No.84 (2019-3) 46

Software Training Center

by 7 ALER) EETOVCRLE L. BhERERE (LLERIRRE)
T b ZHIZEIE T S FAl & LT, PID (Proportional
Integral Differential) . 7 1 — K N 7 #illffl 7 & D]
MFEE & . MATLAB. Simulink, Stateflow 72 &EDEFY)
YT = VOEE, B UONES72E TV R SRR B TR
L7200DFEy F7U M A KV TOFHEIZDONTES,
BN HENEZ L2157 T,

C AT VT3 EEY T VN TS ~mET O ADH
i & Fhti~

FE7OD s MIEREINLY 7 V7 2 T 2% T 51
. EFVEERLY I 2L —3 a Y REET 5751 TR
<y HEEE. RV, L o oM B R R 25
WMHAARTRTH D, 22T, V/—LHETERLLT
FATVAET) Y THARITAVRTIAT Y AT 0t
AFFRL, =Y 7 b 2 TSI A%)L BB
bo ETIVEIEE, ETNT A M, HEjI— FAR, 3— Nk
FE. VAT AT A NOENENO TREZIEHEIHE > TEi
TEAFNEHIE TS, BENGRBEENEEZEKIITRT,

5. 8 8 R 1”8

VI NI T ML —= 7y vt MENRERTIC

T R T e e e g

xR-2 ATvT 2 EFTILR—RFHHE
Table 2 Step 2: Model-based development

Matlab
+ What is MATLAB?
+ Data input and editing
« Data operations
+ Data types and arrays
+ Graph drawing
+ Functional programming

Model-based development overview Stateflow
« MBD overview « Basic operation
« MBD process and toolsets + Flow chart

+ State chart
+ Other functions

Simulink
- Basic operation
» Modeling and simulation
+ Modeling equations
+ Linear system modeling
- Discrete system modeling

MicroAutoBox
+ What is MicroAutoBox?
+ Hardware specifications
+ Harness creation
+ RTI block set
+ Flash memory write/clear
- RS232C serial communication
+ CAN communication
+ Bypass rapid prototyping

ControlDesk
+ ControlDesk overview
« Basic operation
+ RTI block set
- Rapid prototyping

x-3 RFvIT I BEVIMIITHRRE
Table 3 Step 3: Software development for mass production

Alliance software development process

+ 052 generic information
+ 052 design activity introduction
+ 052 validation activity introduction

Auto code generation

+ Automotive SPICE and 052 alliance process| + Auto code generation overview

+ Code generation by embedded coder

Alliance modeling rules and guidelines
+ Scope
* References
+ Terms & definitions
+ Symbols & abbreviations
+ Alliance rules

Static code analysis
« Static code analysis overview
« Static code analysis tools

+ Code check by TCS ECA
+ Code check by Polyspace

Model development for mass production
+ Modeling for code generation
+ Model verification process
+ Test case generation by Reactis
+ Model verification by Simulink V&V
+ Simulink diagnosis report
+ Model check report

+ Standards checks using static analysis

HILS (Hardware-in-the-loop-simulation)
« HILS introduction
« HILS setup and walk-through
+ Testing procedure in HILS

47 NISSAN TECHNICAL REVIEW No. 84 (2019-3)

software for mass production and an understanding of
the Alliance modeling guidelines and Alliance processes
defined by Renault and Nissan. They obtain the skills for
carrying out model development and testing, automatic code
generation and validation, and system testing according
to the criteria of each process. The specific details of the
training courses are shown in Table 3.

5. Training Environment

The Software Training Center is located in the
Seminar House adjacent to the Nissan Advanced
Technology Center in the city of Atsugi in Kanagawa
Prefecture. Training courses are conducted in a large
lecture hall and in two laboratory rooms for carrying out
software evaluations using test equipment.

In the large lecture hall, each trainee is issued
a personal computer (PC) and licenses to use software
development tools. Trainees learn the intended skills by
actually operating the PCs themselves while watching the
operations performed by an instructor (Fig. 1).

The laboratories have a test environment where
prototype models can be evaluated using radio-controlled
model cars (Fig. 2). A test environment is available that is
identical to the environment used in an actual development
project to evaluate an ECU, for example, for an advanced
driver assistance system (ADAS) (Fig. 3).

In Step 2, trainees create prototype models for low-
speed driving, following a preceding vehicle and emergency
braking and evaluate them by running the software on the
radio-controlled model cars. In Step 3, they create models
for hands-off steering wheel detection processing and
lateral vehicle control processing, generate the source
code, and integrate it with an actual development project
model to run a hardware-in-the-loop simulation (HILS)
using an actual ECU.

6. Feedback from Trainees

Through the three steps explained above, trainees
learn basic principles, acquire skills in using development
tools, create a prototype model, and develop and evaluate a
software program for an ECU. One distinct feature is that
through hands-on training the trainees experience all the
processes in software development during the course of
completing their own software program by trial and error.

The following favorable evaluations were received
from trainees who completed the entire training program.
¢ I learned the importance of the specification document
quality and of feasible specifications development. I
learned the points requiring attention when pinpointing
the root causes of problems and incorporating fixes in the
model. *I can now imagine how software operates, so I
will be able to discuss things with suppliers on a deeper
level. I am now able to estimate the manpower needed to
develop or revise software. Overall, 98% of the engineers
who undertook this training responded positively that they
now have the confidence to develop software or that their
anxieties about it have been dispelled.

VIhDI7 b—ZV0€VS

&5 HBEIMERAM IS v 71T 51 3 F— 7 AN
AV EN, HEHOKK— IV, B I OERETM T R
EBEITTW5,

KE=NVTid, —A—HBD/ v a3y (PC) L&Y —
VI ADE-Z b, FRIOFRER 055 FEBRCH
LPCTFEENLAFLFET L (K1),

FEREHE T R, Varh—ToTa by 4 TEF
WVERiEREE (X2) . B 2 e E B ES A7 4 (ADAS)
OECUGHiEEi & L CETu Y27 N THEHL TV 5
ELH O HAEL TS (K3),

AT v 7 2TIE, REEST, AIHERE, BETL—F D
TN ATETNVEIER L, 7YY — L TOETR
%4790 AT v 73TlE. /Ny X 7THALE, 7
IO € 7 VAR, O — FAEREZITW, E7adx
7 NOETIVEFAL. EECUTOHHILS (Hardware In
the Loop Simulation) 7 A %479,

6. ZREDRE

ZODAT Y T RMLT, FEEZEDY, V- VEEEHE
BL, 7O s A TFEFVOER, ECUMIITY 7 v =
T ORI - FFNE T, PIA&TT—THEDY 7 b
VT REREETNWZET, VI My o TREOEL
BEEMGRE L TERI L2 —DODEHE LTV 5,

el BT Lok THEE0",) iA
ADOEES 227z | [ANEEGREEOBIFT R E) ;AR
RENTBREBEEENRZ] TV T b 2T OB E DA
A=V TELLIIo2DT, ¥ TFIA4TVELDIFEVL
NV TCHERTELREID DV [V 7 NS - W)
MLFENDBRFEEND L2572 7 EIFEHI2 T
Do BARTIZISUAAR ML —= 72KV 7 v =7 H
BOABNV DOV RENHL ol b v HERNET
Ho7zo

.¥F & ®

CNETIE UM, 2WI2MET L7z BAEMaRR Y
HBICERDHLIOD, Aty ¥ TOHF2MLT—ELN
WO 2 FIZET LI ENTETVS, ALrDY A
F LA ORIER 7L T X LIZOWTIE, Kb vy Tk
o TnZve LLARDS, IT7 L 5FMMIEY AT 4
HMTRECEDLZLIZES, 222 TBLI LT,
FLOHANDOWIERTEDEE R B, AL v ¥ TH 72
ITRENEEN L, SBRSOIGELHBIEOZLYE, ZhUl
V7 by = THAM OIS LTI B 2 F I
L. &k, FHEMICY 7 by 2 7 20 ¥V =7 OB & HEE
LTw<,

7. Conclusion

The first and second training sessions have been
completed. While there were differences in basic knowledge
and work responsibilities, the trainees acquired a certain
level of fundamental skills through the training courses
they received at the Center. The Software Training Center
does not treat the control procedures or algorithms specific
to individual systems. However, the core technologies do not
differ greatly between systems. If the trainees understand
that core, they will be able to deal with new technologies.
It is hoped that, by taking advantage of the knowledge
and skills they acquired at the Center, they will be able
to cope with the ongoing evolution of onboard software
engineering accompanying the further transformation of
vehicles in the coming years. We will continue to promote
well-planned nurturing of software engineers at the Center
in the future.

OO0V OVOVOVVVVVOVVVOVOVVVOVOVVOVOVOVOOVOOOOOS

i

K-1 MATLAB &EHE
Fig.1 Lecture on MATLAB operations

H-2 JORYATETILOT R MNRIE
Fig.2 Prototype model test environment

K-3 ECU FX MRIE (HILS)
Fig.3 ECU test environment (HILS)

H ZE ¥ #R No.84 (2019-3) 48

Software Training Center

8. & £ 2 mt 8. References
1) M. Yamada: Engineers’ skill standards for model-based
1) WWHIGEE AR T AT AIIBT L ETIVAR— ZH development (MBD) in embedded systems, JMAAB,
% (MBD) i % o & ¥ v & # JMAAB. SEC SEC Journal, Vol. 13, pp. 48-51 (2008).

journal . #5135 pp. 4851 (2008).

W=#E Author (s) ll

TTR N L1 = 1= A N S (< -

Yukiteru Yamamoto ~ Miwako Hasegawa Yuji Ono

49 NISSAN TECHNICAL REVIEW No. 84 (2019-3)

TN EWMER

1. &

(20174E11 H~20184E 10)

L—1

B
"R R

MEZLRPAME . RS B D EERITBRLTBY £,
MR I ZHIEOE, () 3FFEMIE LS.

2018.3

2017 FMFARFMHES
BSEERRE
(A E N A B E AT &)

B LY @ PN REFAT OWFge
(55 1%) — Tip-soot DFERXH Z A h &
FDXF—INTGA—F —

S % %, N 5 %

01711 [T 20 EERES| | EREESRE |Bhies K-V AVERARE T B

ChiZ 11 15.) g B fE B E B

RO—bAVERE 5A BE

T N

WoowE T B 2R e

R R T

e R AT B Ak A

FHA Yy~ R IR

FEEH Y N

oo T M SR A

WoOE T Y % 4R

£ B oK M B WA A

N —=hoA v ERS WA TTE

B O T M WP R

FUA B - b S

g BB fF B = Ew

BT M R %A

2017.11 |2 29 FE R AR AIE e AR oA T B mH
B AR

2017.11 |2 20 R AR AEHRITEN | it | 7=k WOk T % WmE i

LEFY

OB ACIEL) | W sy 2 WA T W k%

2017.11 | 20 EEEMIRER HALE R | S | 75k A E LR s
Cha Rl 1)

2017.11 |2 20 R EMIE e B HIERE Bk HEEHBE AN AR 5iE
G,

201711 |*ERL 29 FEEEHEIKERE. EAEILE ST Wik L ¥ HEE B

SHUTREEE BRORT) :) .
OELE S 87) | 45 2 0P 5t 0 4 TP b T L

/ST —bLA BV
JEATHAT B 5 T

20184 |IEEE IAS Electrical Machines|Principle of Variable Leakage Flux IPMSM|EV ¥ A7 A28 MifE £
Committee Prize Paper Awards|Using Arc-Shaped Magnet Considering|EV A7 AR i &
for Papers Presented at ECCE|Variable Motor Parameter Characteristics|EV ¥ A7 40380 EAK #A
2017 Depending on Load Current EVIATLMIZERT B il
Second Prize
(IEES IAS)
H £ 3] No.84 (2019-3) 50

(2017 4F-

11 H~20184E10 H)

ZHEAEH H F % H OOl % H #
20186 MEBITZERKRE BLERA T oah B0 L O HGH A MR EBA S U EE
iRE 25 1~ 25 34 B ERATREE w ER
AR L A
(AR 0 B AR 3 0 2 B HR L (1) J5O Z a (V =/L o)
5 S (VR e RS
20186 201 8EERAFAHFRE HEIEL Y VY HEHAT 3 —7 14 > 7O 7- A EEEE il FH1E

BifrE Bl 5E & B EEAL
(—MeAt N H ARG S22)

2018.10 |2018 FHEZEARZAMH RS 2T E PR Mo 22 AR T | 2 VY& R4 7 Ml #H]

2018.3

20186

BSEERKRE
(AL R H B AT &)

T 29 FEHAKMFRRME
()

(— etk FlE N H A A &
FRY 29 FEFH R

(AN AR FER T 22 FE AR BT AR B)

VI UVCT H~VFY) v 7 i okEsE

e 2L

ML] DAL EIRE D IFAT & e iRt O

FiE

EHILBIFNDO AT — VIVEHT 527 —1
¥ BRI L 7o AN e R B O AT & %
AL S & D 720 DREHE

il

A > it e

/ST=FLA Y -EV
FEATHMT B 5E

N =k A Y-EV
JATHAT R SE AT
LU N &

CA T RPN o

X

51

NISSAN TECHNICAL REVIEW No. 84 (2019-3)

2. BmiEhZE

(20174E11 H~20184E 10)

REZEL BB ZHRIIBEL TB) 95

ZEA4EH SHEE (B, 2o % H % B fie
201711 BHEBBEKASHT I =AY 5 — [P 20 4R EEAh 4 | R BRe s 0 RSP

201711

201711

201712

201712

20181

20182

2018.3

20184

2018.6

2018.6

2018.7

2018.10

Nissan NP300 Frontier

Nissan LEAF

HEY — T il

3.0L Turbocharged DOHC V-6
(Infiniti @Q50)

Nissan LEAF N-Connecta

CO-FHHEHIRICE 59 $e-POWER
iy

Nissan LEAF

Micra

Nissan Energy Electric Vehicle
Power Solutions, France

EXEROEEDORMEICLDIRE
(A JI-FAILIWX - HE
BEERINR)

Qashqgai

Fa1—7

- PREREEE R L FHEAT - HIfE

Car of The Year Brazil
- Best Pickup 2018

CES 2018 Innovation Awards
- Vehicle Intelligence and Self-Driving
Technology category

2017-2018 H A% I YB3 1 ¥ — H
SH—F I TY—F THA

2018 Wards 10 Best Engines

What Car? Car of the Year 2018
- Best Electric Car

TR 29 4EREE T oA KE
B VYR AETVERR

BIXNEF—Ly—EEE

2018 World Green Car

FirstCar Awards 2018
- Car of the Year

FT/IFC Transformational Business Awards

2018
- Excellence in Climate Solutions category

PR30 4R FE = N iR b R E

Auto Express 30th Anniversary Awards
- Car of the Past 30 Years

2018 4EE Ty R A VB
B TIATTHAUE

(7)) [Autoesporte

Magazine| #&

(k) Consumer Technology

Association

FrEIREFNGENE A HA A E)

LB

Ch

(k) [WardsAuto] 3

=4
[F

(3£) [What Car?]

— MM EEN AT A F -
s —

2018 New York International
Auto Show

(#£) [FirstCar]

il

(3£) The Financial Times
(FT) and the International
Finance Corporation (IFC)

i vii)

(3) [Auto Express] k.

[evo] 7%, [Octane] &

At EENE AT A Ak

LR

TN

H ZE ¥ #R No.84 (2019-3)

52

S ETIZE Technical Award News '

IEEE Industry Applications Society, Industrial Power Conversion Systems Department,
Electric Machines Committee, 2018 Second Paper Award

E-5I\SX-5 DafFETKEFEZZR L HIHARERNERT—5 OB

Principle of Variable Leakage Flux IPMSM Using Arc-Shaped Magnet Considering Variable Motor
Parameter Characteristics Depending on Load Current

m & T ="

Takashi Kato Toru Matsuura

1. [U & [

BEHEO LR T — % Tid, B - @b
MOHAFAFEE—% (LT, IPMSM) 2 EIZHVS
NTW5b, F2TEDE R L EE N R Ak LK o
BORICH LTt E— Y OEREREREIEART 57200
WM DA E N TV D, BT EE—5 0k
YBRO—2L LT, FADWET NV — 7 TR LRI
HE—% (LIF, VLFIPMSM) Z#ZEL TWwb, L0)7i
AL A T O AR D ZE T 0 A CH ZEH A3
No7-0, mmTﬁﬁﬁ®;7&77%ll—9@¢%W
AA 0 F I EOBINERZPAETH S Z LHNFEDO—DT
H5bo

Z D VLF-IPMSM Tld—#%1 72 IPMSM & £7: 0 | #iha
TR DTERAM IS U CBIICEIL T 2720, BT
R L AR & OTHRIEHRIEH L TH 5 g KA fafl
EELIUFNEIVEREE R D,

KRESL T, — IR EEE S D diih E RS SR

Ciy SR Rk I (AN A RV RUR DY TSRk i A BN
ARG R B % B DO Walia, i) & L CEEBT 5
Z LT, BRIV X BRIEN Lo X = XA %S
M L7e FoMFEABA L CEMEMEER ORI - 53F
fili 2 A7V WS R ARG SR AR LS L 2 B R ER IR O LKA
WHETHAZ LR Y Il —2a YV RUERIZEDRL
72

2. 8 =

—HLZIPMSM @D MV 7 1%, FEHANRT MV i LRGN
VA DM E L TE SN D, VLF-IPMSM T dq #ili i
ROEBOEEE b0 V7RO L) ICESR
bo WHRANZ VO ABR S Al 2) KD £ 9 (ARG

IR B La ia DIE S 70 5705, EBR - fEAT CTHUS
f%%@ﬁé%@%%f%%@@&f%b\Eﬂ%mm
FAWRIEOA TP T2 LIETE R0

fee R & A woAR i

Kensuke Sasaki Tsutomu Tanimoto

1. Introduction

Interior permanent magnet synchronous motors
(IPMSMs) are the principal drive motors used on electric
vehicles (EVs) because of their compact size and high
efficiency. Variable technologies have been actively
researched in recent years for expanding the high-
efficiency operating region of the motor in response to
demands for further improvement of electric energy
consumption and extension of the driving range. Our
research group has proposed a variable leakage flux
IPMSM (VLF-IPMSM) as one promising type of variable
characteristic motor. One major feature of this motor
is that it does not need additional elements such as an
actuator or semiconductor switches like those required
by other variable motor systems because variable
characteristics can be obtained by changing only the
magnetic circuit configuration of the rotor.

This VLF-IPMSM differs from ordinary IPMSMs
in that magnetic flux varies passively according to the
current load. This makes it more important to execute the
motor design by taking into account interference between
armature magnetic flux and magnet magnetic flux as well
as nonlinear magnetic saturation.

This article proposes an approximate solution method
for accurately separating the magnetic flux component of
the magnet and the armature magnetic flux component on
the d-axis, which is generally thought to be extremely
difficult. The mechanism by which the variable flux leakage
characteristic improves efficiency is made clear by deriving
the magnetic flux linkage ¥.(is, is) as a function of the d-q
axis current. This method was applied to construct and
evaluate a proof-of-principle prototype motor. It was shown
by simulation and experiments that the variable leakage
flux characteristic makes it possible to expand the high
efficiency operating region of the motor.

2. Overview

The torque of an IPMSM is generally expressed as
the cross product of the current vector is and the magnetic
flux vector A4. For the VLF-IPMSM, torque is expressed
as shown in Eq. (1) because the d-q axis magnetic flux is

*EV ¥ AT LWFZEHT. EV System Laboratory

53 NISSAN TECHNICAL REVIEW No. 84 (2019—3)

E—YI\SA-5DEEERKEFEZER U CHIEAERETERNERET—5 OBREFE

Tr = P [Adq ia, ig) X iag | S

Aa=Wa (id, iq) + La (id, iq) ia (2

Z 2 CREL T, dBh G i 25/ N Aia 72072 b L
TV IO ZEALE DS Le is O ZALE A L TN T &
LT FAL. Q)& T Wa (ia, ig) % TABINZ FFHTS
BFEERRE L7,

[%‘(id, iq)] ! [ia— (ia+Aid)][Ad (i, iq)] .3
Lia i) | dia |1 1 Jalia, i))

MRS E=FET N (JERBMIPMSM, K OV VLF-
IPMSM) 1220V C, REFELHWTERARIZHT S
TEATRE R W (i, i) DFFIE & FNT L 7205 R A 218" F72
R B id i KT 9 4 > L CEREY L 72356 OB S
HEETTEY FLTWh, T3 2a) OHtRA TPMSM
Tl BILOOEAMIRE CRAB R VA RAMEE LD
R MV 7 & A TSRS L D WA LT b
ZEDGr B I 2(D)I27R T VLFIPMSM Tld, fEH
FERRE TR AR RIS K) Wi/ Ml %2 & 0 . BT

T T e e g

Stator core
Stator core

T e i

%(,

[~ Rotor core

(2) Conventional IPMSM (b) VLF-IPMSM
-1 BSOS

Fig. 1 Schematic drawings for comparison

Operating point trajectory e 1.00
0.95
0.90
0.85

Y, [p.ul

0.80

ToMo.75
0.6

o4 L . oe 0.70

I;[p.ul 02 0 0 02 1, [p.ul

(a) Conventional IPMSM

Operating point trajectory

1.00
0.95
— 10 - ‘ 0 Ho.90
0.85
0.80

0.75
0.6

: 0.6
0.4 -
I;[pul 0.2 . I, [pul] 0.70

(b) VLF-IPMSM

K-2 Wa (g, iq) X v TDHBE
Fig. 2 Comparison of ¥a (i, ig) variation maps

a function of the current. The d-axis component 1. of the
magnetic flux vector is composed of the terms of the
magnetic flux ¥. and the armature flux L. is as shown in
Eq. (2). However, only the total amount of magnetic flux
Aa can be obtained experimentally or by simulation. In
principle, it is not possible to extract only the magnetic
flux term.

Tr = P [Adq (ia, iq) X iaq | - (D
Aa=Wa (ia, iq) + La (id, iq) ia @

Therefore, this article proposes a method of
approximately simulating ¥. (i4, i;) by using Eq. (3), in
which the amount of change in the ¥. term relative to the
amount of change in the Ls i« term is infinitesimal when the
d-axis current i« is changed only by a minuscule amount Ai..

W ia, iq) -1 ia— (ia+Aid) Ad (i, iq)
[Ld(id, iq)] Aia [-1 1][Adia, iq)] &
The proposed method was used to simulate the
magnetic flux ¥. (iq, i) characteristics relative to the
current load for the conventional IPMSM and VLF- IPMSM
models shown in Fig. 1. The results are shown in Fig. 2.

The operating point trajectory of the motors when operated

at the maximum output line are also plotted in the figure.
T e e e T e e e R s

300 ; ; 98

96

250 -3
94
200 [-fi 92 _
e I S
2 90 &
2 150 5
=) 88 g
g =
T 100 [t L L L A 86 &
J 84
50 (Moo eSS e [
| 82
 — ' i 80
0 2000 4000 6000 8000 10000 12000
Speed [min'!]
(@) Conventional IPMSM
300 ! ! 98
9
250 (-

94
= 200 - 92§
Z | 92 &
g 150 5
& 88 8
e H

100 (Rl -+ A s 86 ™
84
50
b/ 82
0 80

0 2000 4000 6000 8000 10000 12000
Speed [min‘1]

(b) VLF-IPMSM
X-3 #HEY Y ITDOHE

Fig.3 Comparison of efficiency maps

H ZE ¥ #R No.84 (2019-3) 54

Principle of Variable Leakage Flux IPMSM Using Arc-Shaped Magnet Considering Variable Motor Parameter

Characteristics Depending on Load Current

BT OB AE - THRAKR MV 7 Gl A TIIBARERK Wa A
MARKELRONTND LR TE D, FomHS
BT, dBIFEWIC & 2 N OMRHELS X D) Wa i
DL, HERELTAZVEOREE THETETns 2 L
DENE RN 5 7070 B0 FER. I T D550 A E
PRI X B SR DMK, AR 2RI X B BAR O KK D
BIRDHE o Ty PERTELIPMSM (250 L b aR i PH & 1=
I E TRIBIILART 2 2 EATEL (H3)s

3. B b b [C

REFHECLY HMEREIHE— % & L TRl 2 1] 225
WRHEDRREL - BEEA W RE L o720 T DU ARIRL DL
Mrid, RIS~ A, EEEIC B 2 EHE N EICHE)
ThobI b, AP GHROBHHEOE L LT - 1
R ED—Bh & %5 2 &2 MifFT %o

The results for the conventional IPMSM in Fig. 2(a) show
that magnetic flux ¥. is maximum under a no-load condition
of zero current and that it decreases due to magnetic
saturation under maximum torque condition A. It is observed
for the VLF-IPMSM in Fig. 2(b) that ¥. is minimum due
to the leakage flux characteristic under a no-load condition
and that approximately the maximum value of magnetic
flux ¥. is obtained under maximum torque condition A
accompanying the increase in the current load. Under high-
speed condition B, ¥. decreases due to the promotion of
leakage flux by the d-axis current and the operating point
trajectory indicates that as a result the VLF-IPMSM can
operate under a small amount of field weakening. As a
result, reduction of the copper loss due to suppression
of the field-weakening current in the high-speed region
combines with the iron loss reduction due to variable flux
to markedly expand the high-efficiency region of the VLF-
IPMSM to the high-speed range compared with that seen
for the conventional IPMSM (Fig. 3).

3. Conclusion

The proposed method made it possible to design and
validate the optimum variable magnetic flux characteristic
for an EV drive motor. This variable magnetic flux technology
is effective for improving electric energy consumption
especially under low to medium loads and in the high-speed
range. Accordingly, it is expected to further improve the
attractiveness and performance of EVs in the coming years.

¥ IEEE IAS Industrial Power Conversion Systems Department, Electric Machines Committee, Prize Paper Awardsi¥. ECCE (Energy
Conversion Congress & Expo.) Z#%fs SN7zmm L oh 6, E3RCBES NS,

The Electric Machines Committee in the IEEE-IAS Industrial Power Conversion Systems Department presents Prize Paper Awards
to the top three technical papers among those submitted in this technical field to the Energy Conversion Congress and Exposition..

55 NISSAN TECHNICAL REVIEW No. 84 (2019-3)

w £ ® &

SROFEIE V7 by 27] TF. HEFRTY 7 M2 72HESNL 0, SR TERD T9,
HEHIZIBOTY 7 by 2 7B SN0 1979 £ T, DB L Z A0 F0EE L T L7225 WEZICHER
VI MY T OBBIRIE LT L LI ARM) FA COMKLEMILT Y 7 by o 7 EBRIRMAICHSE

— S CREEEAL. BEE) ICBFERICEMSEZRT TV o, HEBBE T, £ OEMMAEY 1T
VW, TOEAREMLTEE Lz, SllE. SALOEMR 7 a0 ACEHE L TT, FFELRKL E L7,
o, WEIZH, V7 by a7y V272 TR, —ROBBHEL Y V2 TICOEBTEL LT, 2b
NG BNEE D LT E Lize BT A N—tF 2 7 1 2 NLHGER &m0 b vy
ALY ALEIICLE L
LStk HEIFICEO LY 7 by o 7O%ENE, FTETHAL, VI M7 2 7 HHBHEOEMEHT S L D
EOLNTVET, SHEOFFEICELY, HEFIZE >TOY 7 by = 7HETZWE (570A) $52EPTE,
SHROPAMAIFEDOBE L 55 L 2 ianizLET,

— V7 b TS -/ - —

2018 FEHERRFEERER

ZHE e I N & S 87—k LA ¥ -EV 5l
oo kOB 96 Wi B OB BF g8 T (T TR = S TvY V&R T A VRS
ANEL R® - H7=bA 7 EVIANE = AT SRR
AIZEE [T S # Bl A m
¥ B = 7$7= A 7BV Bl RRAR i3 H# - Wz & m
[ANRRE & < /A EEFA - —EARIERT
% H BEAaN B B 70— 7N VAR S
Ko OH O E F T O~ A ¥ L T AR 5 40 5 45
e IE W Infiniti # & B % &6 ooH o K INT—A v i
o R Infiniti # & B % &8
%% =M Infiniti % & B %8 &6
(A NI SIS TR TAFI-&HF - CARED =B R
XK W OF — WAY V=17 4= ARETEER oA E wroge A W
% W % MECAE - PLME O I S L O S T

HER®BFE4S

© ZEME I iin K
& 7 2019 4E 3 A
FEAT - RN H e % B &

5% AT W H e ABp st Wanisemr e
MENEEARTHRORFL1E 1 &
T 243-0123

AU R A A ERIR &4
FHHRITHRIXAZRT 3 - 13 -5

HH—
=

Editorial Postscript

The special feature in this issue focuses on software. This is the first time the Nissan Technical Review has
devoted a special feature to software. Approximately 40 years have passed since we first adopted software on Nissan
vehicles in 1979. The ongoing expansion of the scale of onboard software still knows no end. At Nissan, we have
undertaken enormous R&D work and put in place related processes in order to develop efficiently onboard software
that is continually increasing in quantity and complexity, confirm its quality, and deliver products to customers on
schedule. The articles organized in this special feature focus on these software technologies and processes. Careful
attention has been taken to make the contents as plain as possible so that they will be readily understandable not only
to software engineers but also to automotive engineers in general. At the same time, topics related to cutting-edge
technologies such as cybersecurity and artificial intelligence have also been included.

The role performed by software in vehicles will continue to increase in importance in the years ahead, and it is
said that software will govern the future lifeblood of vehicles. It is hoped that the comprehensive review of automotive

software provided in this special feature will be a useful reference for future R&D activities.

Kazuhiro Ishigami
Software Engineering Department

FY2018 Nissan Technical Review Editorial Committee

Hirotaka KUSUKAWA

Engine and Drivetrain Engineering Department
Taiichi ONOYAMA

Powertrain and EV Energy System Engineering Department
Kiyoshi TAKAGI

Technology Planning Department
Haruhito MORI
Members Research Planning Department

Mallgsaf(liide %ll\/IADA b Tomohiro YAMAMURA
roduct Planning Department Mobility Services Laboratory

Masaharu SATOU

Infiniti Product Development Department Teé?gga{{%esc%gég ﬁffairs Department
Yasuhiro SAITOU

o Mamoru ISHIJIMA

Infiniti Product Development Department Vehicle Production Engineering Control Department
Tatsuro MORI Ryouji ORII

Infiniti Product Development Department Powertrain Planning Department
Tetsuo SASAKI

Connected Car and Services Engineering Department
Koichi ONISHI

Customer Performance and Vehicle Test Engineering Department
Sou NATORI

Integrated CAE and PLM Department
Keiji KAWAMOTO

Powertrain and EV Planning Department

Chairman
Hiroki SAKAMOTO
Advanced Materials Laboratory

Vice-chairman
Ryozo HIRAKU
Powertrain and EV Engineering Division

Organizer

Tatsumi YANAI
Research Planning Department

Hiromi HOSOYA
Research Planning Department

Nissan Technical Review 84

March, 2019
Publisher Nissan Technical Review
(Editor) Editorial Committee

Copyrights of all atricles described in this
Review have been preserved by NISSAN

Distributor Research Planning Department
Nissan Reseach Center
NISSAN MOTOR CO., LTD.
1-1, Morinosatoaoyama, Atsugi-shi
Kanagawa, 243-0123, Japan

MOTOR CO., LTD.

For permission to reproduce articles in
quantity or for use in other print material,
contact the chairman of the editorial
committee.

F# a7+ Cover Design Concept

VINI LT FRFERATOA TARE STV A TV EHY) SNTA T4 ATHDIEND
2\ LD L D23 O T 2 V< DFIEI 7 VT RABEBIEN, FOT IV
TV AL D N D OLE 20— FFAl I OGS EREO B MERAFEITINE T,
— ORI Ty ETHZBIE TEISN T, ZIUEDSE, TV = TI3F %
HITVET A ROERT AL ARV TN 2 T2 B2 5I935 ET Y T7h
LT L VZTDOTAT TNy ETRIULEIN T e/ A=V L F L 72 H AR
(I BEOEREZER T L7200, 5%b/ 3y LICEHENG Y 7 272 LTV~
DA NR=2ar L THEET,

Many offices engaged in developing automotive software are ordinary
workplaces with row upon row of personal computers. However, shown on the
computer screens are vehicle control algorithms that engineers are reviewing
for errors, studying quality evaluation plans or checking the actual quality. This
series of tasks involved in software development is expressed in a visible form
on the computer screens, and engineers carry out the development work on that
basis. By presenting invisible software in a manner than be seen, the cover
design of this issue represents the process in which the ideas of software
engineers are embodied in concrete forms on their computer screens. We will
continue to promote vehicle innovations through the medium of the software
displayed on our computer screens in order to accomplish revolutionary changes
that occur once in a hundred years.

At Wz

Kazuhiro Ishigami

VAN EN R

Software Engineering
Department

ISSN 0385-9266

BEBESBEKTEHL BERREEZES

