題名	自動車廃プラスチック油化技術(ケミカルリサイクル):油化技術の開発		
実施者	環境エネルギー	期間	2022/4~2024/3

<目的·課題>

ASR削減・資源有効活用・CO2削減を目的としたケミカルリサイクル(油化 技術)の成立性を確認する。

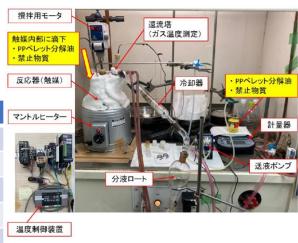
<成果まとめ>

	課題	結論
資源循	原油に戻せる品 質となる技術か?	連続運転での課題出しを実施し、製造条件最適化により、実 施可能であることを確認。ただし、含有元素を受け入れ規格以 内にする為、油化+水素化の工程は必須。
環	禁止物質の無害 化は可能か?	禁止物質は分解され、油化したものに含有されない事を確認
CO ₂ 削減	削減技術となる か?	ケミカルリサイクルに使用しているASRの残渣は廃却(サーマルリカバリー)以外の活用ができず、サーマルリカバリーよりCO2の削減ができ、資源化(油化)が可能。

<検討内容>

1. ASR油化、水素化処理による原料化

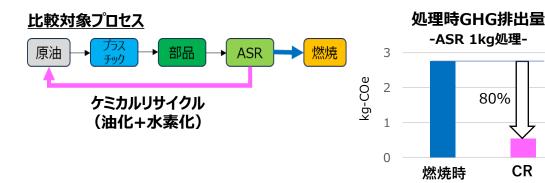
含有元素量を受け入れ規格以内に抑制する為 油化に加えて、塩素などを除去する水素化の工 程は必須。また、水素化工程では、連続運転での 効率低下抑制の為、加熱条件、触媒の配置等 の最適化を実施。水素化工程2回実施する事で、 窒素分は殆ど検出されず、収率は26.3%。


水素化工程は低品質ASRを原料とする為、必 須であるが、コスト・エネルギーがかかる事が課題。

項目	粗油: ASR 分解油	1回目 水素化後	2回目 水素化後
油の外観			
有機塩素 [mass ppm]	720	1未満	1未満
窒素分 [wt %] [mass ppm]	1.0 10,000	0.28 2,800	0.0001未満 1未満

2. 禁止物質の無害化検証

ASRには過去の車両部品に使用されていた禁 止化学物質(難燃剤・可塑剤など)が含まれ、 ケミカルリサイクル後に残存が懸念されたが、油化 の工程で分解され、無害化できることを確認。


代表禁止物質	初期ppm	油化後 ppm
HBCDD (難燃)	10000	<10
Deca-BDE (難燃)	100000	<10
TCEP(難燃)	1000	<100
BBP(可塑剤)	100000	<50
DMEP(可塑剤)	100000	<100*

CR

3. LCA評価

油化+水素化処理(ケミカルリサイクル)で発生するCO2を算出。現状の燃焼(サーマルリカ バリー)での排出量に比べ、ケミカルリサイクルのCO2排出量は低く、資源化もできる。 ただし、現状、ASRは熱源として利用され、ケミカルリサイクルに移行した場合、現活用分におい て、他の熱源が必要になる為、産業界全体としてのインパクトも考える必要がある。また、マテリア ルリサイクルに比べると、より上流工程へ戻す事から、CO2原単位は高くなるが、本来廃却してい た残渣が原料であり、焼却回避効果をどのように扱うかが不明であり、単純な比較はできない。

