Agenda

1. Environmental Technology Activities
2. Potential of Diesel Engines
3. Clean Diesels
4. Future Diesel Emissions Regulations
5. Japan’s Efforts to Reduce Emissions
6. Future Clean Diesels
1. Environmental Technology Activities

Nissan Green Program 2010

Evolution of Engine and Transmission
- DIG
- VVEL
- Clean Diesel
- 3L Car

Introduction and Expansion of Electric Vehicles
- EV
- In-house HEV
- FCV
- Li-ion Battery

Integrated approach collaborating with other sectors
- SKY PROJECT
Engine Technology Roadmap

- Technical challenges and long-term targets
 - Gasoline engine: CO₂ emission reduction (-30%)
 - Diesel engine: Exhaust emissions reduction (-90%)

2. Potential of Diesel Engines
Comparison: Gasoline Engine and Diesel Engine

Although they are both internal combustion engines, they differ in output control and ignition method.

Gasoline Engine
- Position of fuel injection: Intake port
- Ignition method: Spark ignition
- Compression ratio: 8-11
- Air and fuel ratio: Stoichiometric
- Mixture flow through throttle valve: Fuel injection amount

Diesel Engine
- Position of fuel injection: Combustion chamber
- Ignition method: Compression ignition
- Compression ratio: 16-22
- Air and fuel ratio: Lean
- Mixture flow through throttle valve: Fuel injection amount

Output control
- Gasoline Engine: Position of fuel injection
- Diesel Engine: Compression ratio

Fuel injection amount
- Gasoline Engine: Throttle valve
- Diesel Engine: Valveless

Combustion energy
- Gasoline Engine: Efficiently converted into kinetic energy
- Diesel Engine: Less pumping-loss

Advantages
- Gasoline Engine: Large torque
- Diesel Engine: High fuel efficiency

Disadvantages
- Gasoline Engine: Large vibration & noise
- Diesel Engine: NOx is generated, PM*(Soot) is generated

*PM: Particulate Matter
3. Clean Diesels

Clean Diesel: M9R

- The M9R engine developed as part of the Renault-Nissan Alliance, achieves high efficiency, clean exhaust emissions, high power and low-noise.
Clean Diesel: M9R

- The M9R cuts the 2 main complaints of the conventional diesel engines; noise and vibration. It also reduces regulated substances, meeting the Euro4 standard, while achieving top-level max power for a two-liter diesel engine.

Clean Diesel: M9R

- The M9R achieves top-level torque for a two-liter diesel engine as well, providing max torque of 360Nm from 1750rpm engine speeds.
Comparison: Conventional Engine & Latest (M9R) Clean Engine

- The level of technology applied in Nissan's M9R clean diesel engine is comparable to that in the CD20T, used in the first Serena in the 1990s.

Comparison: Conventional Engine & Latest (M9R) Clean Engine

- Fuel-supply system: A common-rail system replaces the regular mechanical fuel pump
 - Fuel is under high pressure to ensure it injects as a fine mist and mixes more evenly with the air
 - The system precisely controls fuel for optimal injection timing

Comparison: Conventional Engine & Latest (M9R) Clean Engine

- A mechanical pump injects fuel directly into each cylinder.
 - Fuel pressure: 200 - 300bar

- Fuel pressure is kept even, optimizing injection to each cylinder by electronic control.
 - Fuel pressure: 1,600bar
What is 1600bar?

1600bar is equivalent to water pressure at the ocean depth of 16000m, which is larger than the water pressure at the deepest ocean trench Marian Trench.

Depth: 11000m

Water pressure 1100bar (1100 barometric pressure)

Marian Trench

1600bar Equivalent to 16000m depth

Comparison: Conventional Engine & Latest (M9R) Clean Engine

- Air-intake port: The double swirl port guides air into the combustion chamber in high-speed swirls
 - Air and fuel mix evenly

Intake air swirls at high speed

Double swirl port

Conventional Engine (CD20T) Latest Engine (M9R)
Comparison: Conventional Engine & Latest (M9R) Clean Engine

Prevents most emissions of soot (PM)
- The DPF disposes up to 99% of soot (PM)

No Aftertreatment Device

Conventional Engine (CD20T)

- Blowing inert exhaust gas into the combustion chamber lowers combustion temperature.

Latest Engine (M9R)

- It absorbs and deposits particulates generated by combustion.
- It oxidizes particulates by keeping the temperature of the DPF body at 600 degrees C.
- The DPF is self-cleaning and the cycle continues.

* DPF: Diesel Particulate Filter

Comparison: Conventional Engine & Latest (M9R) Clean Engine

Restrains the generation of NOx
- Added to reduce combustion temperature, the EGR cooler prevents the generation of NOx.

EGR System

Conventional Engine (CD20T)

- To lower combustion temperature, the EGR cooler cools the exhaust gas guided into the combustion chamber.
Comparison:
Conventional Engine & Latest (M9R) Clean Engine

Noise restraint

- Highly responsive piezoelectric-controlled injectors allow multiple fuel streams of high accuracy. Dispersed combustion pressure under optimum control reduces combustion noise.

A mechanical fuel pump injects only one stream.

- Common rail system (1600 bars)
- Piezoelectric-controlled injectors

Each injection is divided into several times streams

Comparison:
Conventional Engine & Latest (M9R) Clean Engine

Noise and vibration restraint

- Vibration is reduced by balance the moving parts of the engine

Reducing elements causing unbalance

Without Balancer

Balancer Shaft

Conventional Engine (CD20T) Latest Engine (M9R)
Comparison: Conventional Engine & Latest (M9R) Clean Engine

Higher torque

- A variable plate inside the turbocharger, controlled according to the speed of the exhaust stream, helps the turbo make big torque in the low-rpm range.

![Variable nozzle turbocharger]

Conventional Engine (CD20T) vs. Latest Engine (M9R)

Clean Diesel (M9R)

- The M9R cuts the 2 main complaints of the conventional diesel engines, noise and vibration. It also reduces regulated substances, meeting the Euro4 standard, while achieving top-level output for a two-liter diesel engine.

Technology Items

- Common rail system (1600 bars)
- Piezoelectric-controlled injectors
- Double swirl port
- DPF*
- EGR (with EGR cooler)
- Variable nozzle turbo
- Balance shaft

*DPF: Diesel Particulate Filter
4. Future Diesel Emissions Regulations

Trend of Exhaust Emissions Regulations

- Restrictions on diesel emissions are tightest in the U.S, but target figures alone cannot illustrate how tight the restrictions are because testing modes differ from region to region

![Graph showing trends in exhaust emissions regulations for Europe, Japan, and China from 2008 to 2014.](image)
Differences in Driving Patterns (JPN, U.S, Europe)

- Acceleration is high on the list in Japan and U.S, while high-speed driving is a more common need in Europe.

![Graph showing differences in driving patterns between Japan, U.S., and Europe.]

Differences in Exhaust-Testing Mode (JPN, U.S, Europe)

- Testing modes and restrictions differ depending on region.

![Graphs showing exhaust-testing modes for Japan, U.S., and Europe.]

From 2008 year
5. Japan’s Efforts to Reduce Emissions

Clean Diesel (M9R) JPN model (Fall 2008)

- Japan’s New Long-term Regulations are more stringent, requiring PM reduction by 45% and NOx reduction by 40% against Europe’s Euro4 Regulations. Therefore, Nissan has added technology to enhance NOx removal performance.
 - NOx-trap catalyst (LNT*) added
 - As there are more transient driving patterns compared to Europe, advanced engine combustion control technology has been added

*LNT: Lean NOx Trap catalyst
Development of Future Clean Diesels: SULEV*

- Developing technology aiming at the ultimate goal of cleaning exhaust emissions to meet SULEV requirements

*The State of California Emission Standards
Development of Future Clean Diesels: SULEV*

Presently, HC is reduced by 90% and NOx is reduced by 70% against Tier2Bin5 standards.

![Graph showing HC and NOx emissions]

*The State of California Emission Standards

Development of Future Clean Diesels: SULEV*

3 technologies that support SULEV*

① Improvement in combustion technology
 MK combustion curbs regulated substances at its origin-phase

② Newly developed HC-NOx trap catalyst
 Improves NOx conversion efficiency using trapped HC which is regulated substances

③ Advanced engine control realizes a highly efficient catalyst as well as combustion improvement

*The State of California Emission Standards
HC-NOx Trap Catalyst

- While conventional NOx-trap catalysts reduced only NOx, the new catalyst has an additional HC-trap layer to efficiently use HC, a regulated substance, for generating a chemical reaction to reduce NOx. This realizes highly efficient removal of both HC and NOx.

1. NO is oxidized and NOx is absorbed by the trap layer
2. The system uses a small controlled amount of O2 with HC to generate H2 and Co, which together perform a highly efficient NOx chemical reaction.

Development of Future Clean Diesels

- Aiming at the technology goal of cleaning engine emissions to the atmospheric level, Nissan will further technology development for CO2 reduction
Emotion
Clean Diesel
Efficiency
Emission

Thank you