New-Generation VQ Engine Briefing

Aug. 22, 2006
Nissan Motor Co., Ltd.

Yo Usuba
Senior Vice President
Agenda

1. The Powertrain concept
2. History of the VQ Engine
3. Concept behind the Newly-Developed V6 Engine
4. New-Generation VQ35/25HR Engine
5. Summary
1. The Powertrain concept
1-1. Nissan’s Core Technology Values

Trusted Driving Pleasure

Trust:
- Environment
- Safety

Driving Pleasure:
- Dynamic Performance

Life on Board

Quality, Cost

Environment

Dynamic Performance

Life on Board
1-2. Development Concept (1)

Ultimate Powertrain

- CO2 reduction
- Fuel Efficiency
- Cleaner Emissions

Dynamic Performance

Environment
1-2. Development Concept (2)

Ultimate Powertrain

Emotion

Efficiency

Emission
1-3. Logic behind the VQ Engine (1)
1-4. DNA of VQ

- 1988: The FEATHER concept engine was developed with focus on smooth and agile revving.

- As agile as a feather

- The Initial VQ Engine Concept
 - Realizing the FEATHER concept
 - Consistent weight reduction of parts
 - Review of the basic structure

- DNA of VQ
 - The engine that revs smooth and agile
1-5. Emotional (1)

“Pleasant Acceleration Sound”
- Clear sound

“Maintaining the Exhilaration”
- Overwhelming power
- Long-lasting power

“The Ideal Agile Response”
- Quick throttle response
- Tangibly strong response at any point

“The engine that revs smooth and agile”
1-5. Emotional (2)

“Pleasant Acceleration Sound”
- Clear sound

Agile smooth performance
- Overwhelming power
- Long-lasting power

“The Ideal Agile Response”
- Quick throttle response
- Tangibly strong response at any point

“The engine that revs smooth and agile”
1-6. Considering the VQ Engine (2)

- Emotion
- Agile smooth performance
- VQ

- Efficiency
- Fuel efficiency
- Emission
- Cleaner emissions
2. History of the VQ Engine
2-1. Evolution of the VQ Engine

- Constant improvements made to the VQ engine.
- Constant application of new technology.

<table>
<thead>
<tr>
<th>Year</th>
<th>Feature</th>
</tr>
</thead>
<tbody>
<tr>
<td>'94</td>
<td>2 step VTC</td>
</tr>
<tr>
<td>'99</td>
<td>Electromagnetic VTC</td>
</tr>
<tr>
<td></td>
<td>Continuously Variable Timing Control</td>
</tr>
<tr>
<td>'05</td>
<td>CVTC on, intake & exhaust side</td>
</tr>
</tbody>
</table>
2-2. Evaluation of the VQ Engine (1)

- On “Ward’s 10 Best Engines” list for 12 consecutive years.

<table>
<thead>
<tr>
<th>Engine</th>
<th>'95</th>
<th>'96</th>
<th>'97</th>
<th>'98</th>
<th>'99</th>
<th>'00</th>
<th>'01</th>
<th>'02</th>
<th>'03</th>
<th>'04</th>
<th>'05</th>
<th>'06</th>
</tr>
</thead>
<tbody>
<tr>
<td>Nissan VQ</td>
<td></td>
</tr>
<tr>
<td>BMW I6</td>
<td></td>
</tr>
<tr>
<td>Ford V8</td>
<td></td>
</tr>
<tr>
<td>DCX V8</td>
<td></td>
</tr>
<tr>
<td>GM V6</td>
<td></td>
</tr>
<tr>
<td>Honda V6</td>
<td></td>
</tr>
<tr>
<td>Toyota V6</td>
<td></td>
</tr>
</tbody>
</table>
2-2. Evaluation of the VQ Engine (2)

- VQ’s DNA evaluated as an engine that revs smooth and agile.

“Ward’s 10 Best engines” Comments

- ’95 “The smoothest, rev-happiest V-6 on the planet”
- ’98 “The light-on-the-feet feel in any speed range is the VQ’s greatest delight”
- ’00 “It’s cat-quick throttle response and unmatched smoothness also mean it’s a genuine delight to drive”
- ’01 “Absolutely uncanny lack of vibration” “The throttle response is outstanding” “This is unquestionably the best-revving V-6 ever”
- ’06 “Spectacular in-gear acceleration” “This engine has brilliant throttle response in any speed range”
2-3. Evaluation of Cars Powered by VQ Engines
3. The Concept Behind the Newly-Developed V6 Engine
3-1. Considering Newly-Developed V6 engine (1)

- Start the development of a new V6 engine by reviewing principal dimensions aimed at even more agile and smooth revving.

- In continuation of VQ engine aspiration, the new engine name followed by “HR” which represents high rate of revolution and outstanding accelerator response.
3-2. Technology of New-Generation VQ Engine

- Increased height of cylinder blocks
- Change of cylinder head
- Symmetric Twin intake System
- Sound insulating engine cover
- Asymmetric piston skirt
- Equal length exhaust manifold
- High ignitability iridium plug
- Lengthening of Conrod
- Hydraulic CVTC on intake side
- Electromagnetic CVTC on exhaust side
- Increase spring power of valve spring
- Hydrogen-free DLC valve lifters
- Change oil pump rotor
- Reinforce chain cover durability
- Reinforce upper oil pan durability
- Enlarge crank journal diameter
- Change diameter of valve
- Enlarge lower oil pan durability
- Enlarge diameter of crankpin
- Equal length exhaust manifold
- Change diameter of valve
- Equal length exhaust manifold
- Improve cooling water flow
- Twin knock sensor
- Processing PVD Piston Ring
- Settings for ladder frame
- Spark plug modified into M12
- Increase compression ratio
3-3. Newly Built 2nd Engine Facility at Iwaki Plant

Factory established for the sole purpose of VQ35HR, VQ25HR engine production

2nd Engine Facility

Introduction of state-of-the-art processing equipment
4. New-Generation VQ35/25HR Engine
4-1. Aim of the New-Generation VQ35/25HR

| Smooth, pleasant drive | 1) High rate of revolution
Max 7500rpm |
|------------------------|--|
| Response | 2) Pleasant acceleration sound
Clear sound |
| Exhilaration | 3) Top level power performance in class
Improved intake
Exhaust
Combustion Efficiency |
| Acceleration sound | 4) Increased practical fuel efficiency
Reduced friction |
| Fuel efficiency | 5) Best-in-class emissions standard
(SU-LEV in Japan) |
4-2. High Revolution Rate
4-2. High Revolution Rate

- Reduced friction and vibration at high speeds.
- Smoother piston action (reduced friction)
- Installation of ladder frame (reinforced stiffness and reduced vibrations)
4-2-1. Smoother piston action (reduced friction)

- **Extension of conrod length**
 By minimizing piston inclination, reduced friction.

- **Asymmetric Piston Skirt**
 Skirt width reduced on side with least amount of pressure resulting in reduced friction.

- **Current conrod**
- **Stretched conrod**
- **Height of block deck**
- **Reduced friction**

Asymmetric Piston Skirt

Extend the height of block deck and the length of conrod
4-2-2. **Addition of ladder frame** *(reduced friction due to reinforced stiffness)*

- The ladder that supports the crank is placed at the bottom of the cylinder block to improve overall engine stiffness thereby minimizing vibrations at high revolution rates.
4-3. Pleasant Acceleration Sound
4-3. Pleasant Acceleration Sound (1)

- Linear and clear acceleration sound in response to Engine RPM.

![Graph showing noise level in db(A) versus Engine RPM for Current VQ35DE and New VQ35HR models, with a 10dB increase noted. Company B's performance is also highlighted.]
4-3. Pleasant Acceleration Sound (2)
- Reinforced sound clarity with reduced noise.

New VQ35HR

Current VQ35DE

High frequency noise reduced.
The symmetrical intake and exhaust system aids the production of clear and powerful sounds at high rates of revolution.

- Twin intake system
- Equal length exhaust manifold
- Optimized front pipe; Efficient merging structure
- Twin exhaust system

The clear sounds unique to V6 are emphasized and noise is controlled.
4-4. Top Level Power Performance in Class
4-4. Top Level Power Performance in Class

- Improvements in Intake - Exhaust - Combustion Efficiency.
 - Reduces resistance to intake by 18%
 - Utilizes VTC intake and exhaust controls on both sides
 - Suppresses exhaust loss
4-4-1. Reduces resistance to intake by 18%

- Dual intake and exhaust system.
- Straight intake port.

Ensures the efficient intake of air.
4-4-2. Utilizes CVTC intake and exhaust controls on both sides

- High degree of flexibility in setting valve timings improve the combustion efficiency for a wide range of engine rpms.

CVTC intake and exhaust controls on both sides

- Hydraulic CVTC on intake side
- Electromagnetic CVTC on exhaust side
4-4-3. Surpresses Exhaust Loss

- Equal length exhaust manifold.
- Symmetrical exhaust system.
4-4-4. Performance of VQ35HR powered vehicles (1)

- Powerful starting + stress-free long-lasting acceleration expandable to 7,500rpm.

Eg: Expressway entrance

The VQ35HR's formidable power is most strongly felt under driving conditions that demand smooth acceleration from low to high speed.

- After passing through the tollbooth, the vehicle gradually accelerates on the ramp
- It then accelerates in one burst on the approaching lane, reaching 100km/h
- The vehicle attains the expressway traffic flow and merges into the main lane.

Attains speed even on short approach!
4-4-4. Performance of VQ35HR powered vehicles (2)

Comparison of full-throttle acceleration

New VQ35HR vs Current VQ35DE

Acceleration G far outstrips existing models

Acceleration G does not drop even at high rpm--great acceleration power

Accelerates from 0-100km/h—one second faster!
4-4-4. Performance of VQ35HR powered vehicles (3)

0-100km/h acceleration time
4-5. Improved Fuel Efficiency
4-5. Improved Fuel Efficiency (1)

- Improved fuel efficiency in daily use situations.

Average actual fuel consumption (%)

(Figures are from in-house measurements)

- Average actual fuel consumption: Weighted average of fuel consumed running on city streets, suburban streets and expressways, including air-conditioner use, night driving and traffic jams.
4-5. Improved Fuel Efficiency (2)

VQ35HR/VQ25HR
- Cylinder heads: Improved water flow (alleviated knocking), iridium plugs (high ignitability)
- Main moving parts: Asymmetric pistons, low tension and low friction piston rings
- Mirror finish of roller bearings
- Valve operating system: Diamond Like Coating valve lifter (reduces friction by 40%)
- Hydraulic CVTC on intake side, Electromagnetic CVTC on exhaust side (Partial area operation)
- EGI parts: Atomizing fuel injector, long-discharge-type ignition coil,
- Engine control: Twin knock sensor, 32bit microcomputer control

Over 40 improvements to fuel efficiency have been incorporated, raising actual fuel efficiency by 10%.

- New low-friction AT
- Improved alternator generating efficiency
- Reduced electrical power consumption
- Reduced brake drag resistance
- Minimization of air conditioning system energy consumption
- Reduction of vehicle weight
- Reduced hub rpm resistance
- Reduced air resistance
- Reduced electrical power consumption
- Improved alternator generating efficiency
- New low-friction AT
- Over 40 improvements to fuel efficiency have been incorporated, raising actual fuel efficiency by 10%.
4-5. Improved Fuel Efficiency (3)

<table>
<thead>
<tr>
<th>Improvement</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>Asymmetric piston skirt</td>
<td>32bit microcomputer control</td>
</tr>
<tr>
<td>Mirror finish of roller bearings</td>
<td>Increase compression ratio</td>
</tr>
<tr>
<td>Long-discharge-type ignition coil</td>
<td>Hydrogen-free DLC valve lifters</td>
</tr>
<tr>
<td>Hydraulic CVTC on intake side</td>
<td>Increase spring power of valve spring</td>
</tr>
<tr>
<td>Electromagnetic CVTC on exhaust side</td>
<td>Enlarge crank journal diameter</td>
</tr>
<tr>
<td>Processing PVD Piston Ring</td>
<td>Atomizing fuel injector</td>
</tr>
<tr>
<td>Twin knock sensor</td>
<td>Improve cooling water flow</td>
</tr>
<tr>
<td>Improve cooling water flow</td>
<td></td>
</tr>
</tbody>
</table>
4-5. Improved Fuel Efficiency (4)

- Use of the world’s first hydrogen-free DLC.

Cam-valve lifter friction reduced by 40%
4-6. Best-in-class emissions standard
4-6. Realizing Best-in-class emissions standard (1)

- Ultra low heat mass catalyst supports
 - Shorten catalyst activating time

- Atomizing fuel injector
 - Reduce engine-out emissions

- Highly ignitable irridium ignition plugs
 - Reduce engine-out emissions

- Early activating A/F sensors Control system
 - Makes control of theoretical air fuel ratio possible immediately after starting

- Atomizing fuel injector
 - Reduce engine-out emissions

- Highly ignitable irridium ignition plugs
 - Reduce engine-out emissions

- Early activating A/F sensors Control system
 - Makes control of theoretical air fuel ratio possible immediately after starting
4-6. Realizing best-in-class emissions standard (2)

- Highly ignitable iridium plugs
 Stabilize combustion when starting.

 ![Image of spark plug with labels for iridium central electrode and platinum ground electrode]

- Early activating A/F sensors
 -> Fuel burns at theoretical air fuel ratio immediately after starting.

- Ultra-low heat mass catalysts

- Atomizing fuel injector
5. Summary
5-1. Aim of the New-Generation VQ35/25HR

| Smooth, pleasant drive | 1. High rate of revolution
Max 7500rpm |
|------------------------|----------------------------------|
| Response | 2. Pleasant acceleration sound
Clear sound |
| Exhilaration | 3. Top level power performance in class
Improved intake, Exhaust, Combustion Efficiency |
| Acceleration sound | 4. Increased practical fuel efficiency
Reduced friction |
| Fuel efficiency | 5. Best-in-class emissions standard
(SU-LEV in Japan) |
| Cleaner emissions | |
1-6. Considering the VQ Engine(2)

Emotion

Agile smooth performance

VQ

Efficiency

Fuel efficiency

Emission

Cleaner emissions
Thank you for your kind attention.